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Resumen

El Huemul del sur, junto con el Huemul del norte y el Pudi, es uno de los tres
ciervos nativos de Chile. Debido a su escasez y su naturaleza esquiva, se ha conver-
tido en un emblema animal en nuestro pais. Este ciervo es endémico de la regién
andino-patagénica de Chile y Argentina. En la actualidad, se encuentra cataloga-
do como en peligro de extinciéon por la Unién Internacional para la Conservacién
de la Naturaleza, siendo uno de los cérvidos neotropicales méas amenazados. La
notable reduccién de esta especie ha alcanzando niveles criticos que lo sittian por
debajo del umbral de Allee. El objetivo de este trabajo es analizar la dindmica de
un modelo matematico para la conservacién de la especie Huemul que se encuentra
bajo efecto Allee y considera migracion. Para estudiar éste fenomeno ecolégico, se
emplea un sistema de ecuaciones diferenciales no lineal el cual modele la dindmica
poblacional, realizando un anélisis cualitativo del mismo, determinando los puntos
de equilibrio, para luego proceder a realizar la linealizacién correspondiente. Esta
caracterizacion de los puntos de equilibrio nos permitird analizar la estabilidad de
los mismos y, a su vez, construir el diagrama de fase correspondiente.

Abstract

The Southern Huemul, along with the Northern Huemul and the Pudd, is one of
the three native deer species in Chile. Due to its scarcity and elusive nature, it has
become an animal emblem in our country. This deer is endemic to the Andean-
Patagonian region of Chile and Argentina. Currently, it is classified as endangered
by the International Union for Conservation of Nature, being one of the most
threatened neotropical deer species. The significant reduction of this species has
reached critical levels, placing it below the Allee threshold. The objective of this
work is to analyze the dynamics of a mathematical model for the conservation
of the Huemul species, which is under the Allee effect and considers migration.
To study this ecological phenomenon, a system of nonlinear differential equations
is used to model the population dynamics, conducting a qualitative analysis of
it, determining the equilibrium points, and then proceeding with the correspon-
ding linearization. This characterization of the equilibrium points will allow us to
analyze their stability and, in turn, construct the corresponding phase diagram.






Capitulo 1

Introduccion

La Ecologia Matematica es de vital importancia debido a su enfoque en el estudio de los
organismos vivos y su relaciéon con el entorno. Este estudio abarca diversos niveles de organi-
zacién de la materia viva, desde las moléculas y células hasta los ecosistemas y la biosfera en
su conjunto. A diferencia de otras ramas de la biologia, la ecologia requiere una perspectiva
multidisciplinaria que emplea herramientas provenientes de disciplinas como la Fisica, Quimi-
ca y Matematica. En particular, los trabajos de investigaciéon en ecologia se distinguen por su
mayor utilizacién de herramientas matematicas, como la estadistica y los modelos matemati-
cos. Estas herramientas permiten analizar y comprender los complejos sistemas ecolégicos de
manera mas precisa y rigurosa.

Asi, la ecologia matemética desempena un papel fundamental en el avance de nuestro
conocimiento sobre la interaccién entre los organismos y su entorno. Al emplear herramientas
matematicas, los investigadores pueden obtener resultados més cuantitativos y realizar pre-
dicciones mas precisas, lo que contribuye a la toma de decisiones informadas en la gestion y
conservacion de los ecosistemas.

Para establecer una relacién entre ecologia y matematica en la aplicacién de modelos
matematicos, se abordan diversas tematicas, como el comportamiento y la dindmica de las
poblaciones, el estudio y andlisis de las epidemias, entre otros casos relevantes. Para com-
prender estos comportamientos, se utilizan técnicas y software computacionales que permiten
resolver y modelar una poblacién especifica. En este sentido, la disciplina encargada de com-
prender las fluctuaciones de una poblaciéon de especies, ya sea en términos de crecimiento,
disminucion e incluso extincién, se conoce como dindmica de poblaciones.

Los cambios en la dindmica de una especie pueden ser causados por diversas razones, tanto
enddgenas (autodestruccién de la propia especie) como exédgenas (como actividades humanas,
terremotos, aluviones, erupciones volcéanicas, entre otros). Es fundamental destacar que las
bajas densidades de poblacién en conjunto con condiciones ecoldgicas criticas pueden conducir
a un crecimiento poblacional reducido, e incluso a la extincién de la especie.



1.1. Antecedentes

1.1.1. Huemul

El Huemul del sur (Hippocamelus bisulcus) es uno de los tres ciervos nativos presentes en
Chile, junto con el huemul del norte o taruka (Hippocamelus antisensis) y el pudd (Pudu
puda). Debido a su escasa abundancia natural y su comportamiento esquivo, se ha conver-
tido, junto con el céndor (Vultur gryphus), en un emblema animal. Es reconocido por los
pueblos originarios de la zona sur de Chile con distintos nombres. Por ejemplo, los Aonikenk o
Tehuelches, habitantes de la estepa patagoénica, lo llamaban shoan, shoam, soonom, soonem,
shonam, shonen, sunam o trula. Mientras que los pehuenches de las regiones del Biobio y de
la Araucania lo conocian como shenam, cisnal o cisnam [20].

Este ciervo es endémico de la regién andino-patagénica de Chile y Argentina [22], en Su-
damérica. En la actualidad, se encuentra entre los cérvidos neotropicales mas amenazados
y estd catalogado como en peligro critico de extincién por la Unién Internacional para la
Conservacién de la Naturaleza (UICN). Ha experimentado una marcada reduccién tanto en
términos de nimero de individuos como en su distribucién original [20].

El Huemul del sur posee una apariencia robusta, con extremidades fuertes y relativamente
cortas, lo que indica su adaptacién a los entornos montanosos. Los machos son mas grandes
y pesados que las hembras, oscilando entre los 55 y 90 kg, en comparacién con los 60 a 80
kg de las hembras. Su pelaje, el cual se renueva dos veces al afio en otofio y primavera, es
pardo, espeso, voluminoso (de 3 a 7 cm de longitud) y ligeramente oleoso, lo que le permite
nadar con facilidad en las frias aguas de lagos, rios y arroyos, ademas de proporcionarle un
excelente abrigo contra las bajas temperaturas y los fuertes vientos. Durante el invierno, el
pelaje se vuelve més largo y oscuro, y hacia la primavera empieza a cambiar a un pelo méas
corto y claro. El tamafio de las cornamentas varia entre las diferentes poblaciones, siendo
mas pequenas en aquellas que habitan en areas costeras, posiblemente debido a la limitada
disponibilidad de minerales y nutrientes en los valles glaciares [20].

Existen tnicamente dos casos documentados de estimacién de edad en vida silvestre, debido
al reducido ntimero de animales marcados y monitoreados a lo largo del tiempo. El primero
de ellos se registrd en el actual Parque Nacional Patagonia (anteriormente Reserva Nacional
Tamango), donde se marcé un huemul hace 10 afios, estimando su edad en 4 afos en el
momento de su captura. El segundo caso ocurrié en el Parque Nacional Torres del Paine,
donde se marcaron 16 cervatillos entre los afios 2002 y 2008. De estos, se obtuvo informacion
de uno de los primeros individuos marcados, que sobrevivié hasta el afio 2016, alcanzando los
13 afios al finalizar el estudio [I1].

Inicialmente, el Huemul del sur habitaba tanto territorio chileno como argentino, desde el rio
Cachapoal (34° L. S., Regién de O’Higgins) hasta el Estrecho de Magallanes (54° L. S.). Sin
embargo, en la actualidad ha experimentado una notable disminucién, habiendo retrocedido
un 35 % de su territorio original y su poblacién ha sufrido una disminucién del 39 %. En Chile,
el Huemul se encuentra presente en las regiones del Biobio, Nuble, Los Rios, Los Lagos, Aysén
y Magallanes, siendo estas tltimas donde se concentra el mayor ntimero de individuos y la
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Figura 1.1: Nicho ecolégico ([20] )

superficie de habitat que se encuentra en areas silvestres protegidas (ASP).

En la actualidad, el Huemul del sur se encuentra en un peligro inminente de extincién debido
a diversos factores. Su reducido tamano poblacional y la alta fragmentaciéon de sus grupos
reproductivos son preocupantes, ya que estos se encuentran distanciados geograficamente entre
si. Ademads, se encuentra aislado geograficamente a mas de 400 km de la poblaciéon mas
numerosa y estable del sur de Argentina y Chile.

Las causas de este proceso de extincién estan asociadas a diferentes factores. Histéricamente,
la especie ha sido objeto de caza, lo que ha afectado su supervivencia en todo su rango de
distribucién. Ademads, las enfermedades transmitidas por la ganaderia extensiva han tenido
un impacto negativo en su salud. Por ultimo, la reduccién y destruccién del habitat debido a
diversas actividades humanas también ha contribuido a su situacién critica [20].

En la década de 1980, se estimaba que la poblacién de huemules oscilaba entre 1.000 y 2.000
individuos. Sin embargo, en los afios 90, se estimé un niimero minimo de 781 individuos.
En el afio 2006, se realizaron dos nuevas estimaciones poblacionales. Una de ellas recopild
informacién mas detallada y realizé un esfuerzo de muestreo desde 1992 hasta 2002, mientras
que la otra se centré unicamente en Argentina. Estas estimaciones se complementan y los
resultados indican la presencia de un total de 101 subpoblaciones en una superficie de 1.964.394
hectreas en los Andes Patagoénicos [24] . Aproximadamente el 52% de esta distribucién
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espacial se encuentra en Chile (con una poblacién estimada entre 1.000 y 1.500 individuos) y
el 48 % en Argentina (con una poblacién estimada entre 350 y 600 individuos).

En cuanto al tamano poblacional, se estima que cerca de 2.000 individuos conforman la
poblacién total. De este ntimero, aproximadamente el 34.4% se encuentra dentro de 4reas
protegidas, que cubren el 47 % de la superficie de distribucién en 31 unidades de proteccion,
como parques, monumentos o reservas, en ambos paises. Por otro lado, el 74 % de la poblacién
se encuentra en pequenos fragmentos de hdbitat que varfan entre 6.400 y 12.800 hectareas.
Debido al reducido tamafio de la poblaciéon actual, con menos de 2.000 individuos y una
drastica disminucién del 99 % en relacién a las abundancias histéricas estimadas, asi como las
tendencias negativas de la poblacién y los riesgos derivados de una creciente fragmentacion,
la especie ha sido clasificada como en peligro de extincién (EN) en la Lista Roja de la Unién
Internacional para la Conservacién de la Naturaleza (IUCN).

En la regién de Aysén, se ha observado que la poblacién general de huemules se mantiene
estable en respuesta al aumento del ganado y la construcciéon de centrales hidroeléctricas a
gran escala en el paisaje, pero solo hasta cierto punto. Sin embargo, se ha identificado que las
poblaciones con menos de 100 individuos tienden a disminuir en estas circunstancias. Para
toda la regién, se considera que existe potencial de recuperacién de la poblaciéon de huemules,
siempre y cuando se gestionen adecuadamente los factores limitantes. Es fundamental llevar
a cabo estudios exhaustivos para estimar el tamafio y la distribucién de la poblacién en su
totalidad, asi como recopilar datos sobre la supervivencia de los individuos. Estos estudios
contribuirdn a mejorar los planes de conservacién para esta especie en peligro de extincion
[20].

Se resalta la importancia de adoptar estrategias de gestiéon que promuevan y preserven la
variabilidad genética, a la vez que limiten la endogamia futura. Para lograrlo, es fundamental
conservar y establecer corredores de hébitat que faciliten el flujo genético, asi como expandir
las areas protegidas con el fin de aumentar el tamafio efectivo de la poblacién. Estas medidas
contribuirdn a mantener la diversidad genética y a salvaguardar el futuro de la especie [20].
Las poblaciones de Huemul se caracterizan por presentar una baja densidad. Se han llevado
a cabo estimaciones de densidad poblacional utilizando diferentes métodos, como transectas
y camaras trampa, y se ha observado que las densidades varian en un rango de 0,35 a 6,9
huemules por kilémetro cuadrado.

1.1.2. Efecto Allee

El ecologista Warder Clyde Allee (1885-1955) hacia el afio 1920 estudi6 las especies desde
una perspectiva ecolégica desarrollando su investigacion hacia el comportamiento grupal de
animales. Dicha investigacién fue presentada en [2].

El fenémeno conocido como efecto Allee, nombrado en honor a W.C. Allee, se manifiesta
en poblaciones locales de especies cuando, en determinadas condiciones naturales, la tasa de
crecimiento per capita disminuye a niveles criticos. Si esta situaciéon persiste a lo largo del
tiempo, existe un alto riesgo de extincidon para la especie.
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Un desafio recurrente en la conservacién de especies en peligro de extincion es que la simple
prohibicién de la caza no garantiza la recuperacion de la poblacién. Esto se debe a que, cuando
la densidad poblacional alcanza niveles criticos, la reproduccién y el mantenimiento se vuelven
extremadamente dificiles, lo que provoca una disminucién en la tasa de reproduccién hasta
niveles negativos y, en ultima instancia, conduce a la extincién de la especie [19].

P. A. Stephens et al. [23], definen el efecto Allee como “una relacién positiva entre un compo-
nente de la adaptacién (fitness) individual y el niimero o densidad de conespecificos” (dos o
més individuos, poblaciones son conespecificos si pertenecen a la misma especie ). Lo anterior
se puede interpretar como: la adaptaciéon de un individuo en una poblacién pequena decrece
a medida que el tamafio de la poblacién también disminuye [IJ.

La adaptacion individual, en su sentido mas amplio, se refiere a la contribucidén genética
que un individuo realiza a las generaciones futuras. Los componentes fundamentales de la
adaptacion son la supervivencia y la reproduccién, de los cuales se derivan otros aspectos como
el desarrollo, la edad de la primera reproduccién, el éxito en el apareamiento, la fecundidad
y las probabilidades de muerte o reproduccién, entre otros [1].

En general, las poblaciones pueden experimentar un fenémeno conocido como efecto Allee, el
cual puede originarse a través de diversos mecanismos biolégicos. En el caso de un componen-
te de efecto Allee, puede surgir debido a cualquier mecanismo que genere una dependencia
positiva de la densidad en algin aspecto adaptativo. El efecto Allee se puede clasificar en 2
grupos:

1. Efecto Allee demografico, se refiere a una relacién positiva entre la tasa de crecimiento
per capita de una poblacién y su tamaifio o densidad. Desde el punto de vista ecolégico
podemos subdivir este efecto en:

a) Efecto Allee débil es aquel en que la tasa de crecimiento de la poblacién per capita
es positiva para densidades de poblacion pequenas, donde un incremento en esta
densidad produce un incremento en la tasa; y para densidades altas un incremento
en la densidad produce un decrecimiento en dicha tasa.

b) El efecto Allee fuerte se refiere a una situacién en la cual, si la densidad poblacional
cae por debajo de un valor critico conocido como umbral de Allee, la tasa de
crecimiento per capita se vuelve negativa. En presencia de un efecto Allee fuerte,
una poblacién experimentard un réapido declive hasta su extincion.[1].

2. Efecto Allee componente, relacionado con la adaptacién individual de una especie, se
refiere a la relacién entre la fecundidad o la supervivencia de una especie y la densidad
poblacional. Este tipo de efecto no siempre genera un Allee demogréfico.

Uno de los principales mecanismos propuestos para explicar una mayor supervivencia en
grupos con altas densidades es la proteccién proporcionada por las agregaciones de animales
frente a amenazas externas [I].

Se han descrito numerosos ejemplos del efecto Allee en relacion con bajas densidades pobla-
cionales. Sin embargo, este efecto también puede influir en un amplio rango de densidades.
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Las poblaciones pueden manifestar el efecto Allee debido a diversos fenémenos [3] , [7], entre
los cuales se incluyen :

1.

En poblaciones con baja densidad o tamafio, puede resultar mas dificil encontrar parejas
compatibles y receptivas.

. La reproduccién puede facilitarse cuando los individuos tienen la percepcién de otros con

los que reproducirse. En poblaciones pequefas, existe una menor probabilidad de que
esta situacion ocurra, ya que los individuos tienen menos oportunidades de encontrar
companeros reproductivos.

. En poblaciones pequenas, los grupos de presas pueden mostrar un comportamiento

antidepredador cooperativo menos eficiente o menos vigilante.

. A bajas densidades de poblacién, el agrupamiento colectivo se vuelve menos eficaz, lo

que afecta la termorregulacion social y la resistencia a bajas temperaturas, disminuyendo
su eficiencia.

. En poblaciones pequeiias, se observa un incremento en la endogamia, es decir, en la tasa

de autofecundaciéon y/o el nimero de apareamientos entre individuos emparentados
cercanos.

El efecto Allee queda representado en la figura (|1.2)) :

Efecto Alle fuerte

Efecto Alle debil

_K —m

-K<-m<0 0<m< K

Figura 1.2: Derivada (dz/dt) v/s Densidad de la poblacién (x), la grafica queda representada

T

por la ecuacién ‘fl—‘f =rz(1— %) (£ — 1), siendo m el umbral Allee y K la capacidad de carga.

m



1.1.3. Migracion

La naturaleza sigue una dindmica sencilla en su funcionamiento, aunque puede resultar dificil
de comprender para los seres humanos. Es simple porque establece un equilibrio dindmico en
el que cada componente cumple su funciéon y forma un sistema organico perfecto que permite
el desarrollo de la vida en todas sus manifestaciones. Dentro de este macrosistema, todas las
partes estan interrelacionadas, y si algin elemento desaparece, la naturaleza se encarga de
reemplazarlo.

A través de disciplinas como la genética y la ecologia, entre otras, hemos ido adquiriendo un
mayor entendimiento de los diferentes mecanismos y relaciones que existen entre los seres vivos
y su entorno, para mantener un orden que garantice la supervivencia de todas las especies. La
depredacién, la competencia, el mutualismo y el parasitismo son ejemplos de estas relaciones,
que contribuyen al equilibrio de los ecosistemas y crean un espacio vital para cada especie.
Todos los grupos tienen la necesidad de encontrar un lugar para habitar, reproducirse y
alimentarse. Algunos son capaces de generar su propio alimento, mientras que otros dependen
de fuentes externas [15].

Esta capacidad de obtener alimento y encontrar un lugar adecuado probablemente sea el se-
creto del éxito para la supervivencia. Cada especie se adapta a caracteristicas fisicas, quimicas
y biolégicas especificas, y esta limitada por ellas. Algunos grupos han logrado encontrar re-
giones que les proporcionan alimento durante todo el ano, tanto para ellos como para sus
crias. Sin embargo, otros no han encontrado tales beneficios y necesitan desplazarse a otros
lugares. Si este desplazamiento es unidireccional, se llama emigracién, mientras que si es de
ida y vuelta, se conoce como migracién [16]

La migracion y la emigracion son componentes importantes del proceso de dispersion, que
desempena un papel crucial en la regulacién del tamafio de las poblaciones. Estos fenéme-
nos contribuyen a garantizar la supervivencia de las especies mas adaptadas, mientras que
los individuos més débiles tienden a ser desplazados o se convierten en presa facil para los
depredadores. Por lo tanto, aquellos individuos que exceden esta capacidad se ven en la nece-
sidad de buscar alternativas o enfrentar la posibilidad de sufrir consecuencias negativas, como
la escasez de alimentos y el aumento de la competencia por el espacio vital. La superviven-
cia de una especie depende de su capacidad para adaptarse a estas limitaciones y encontrar
soluciones viables para su subsistencia [10].

La emigracién puede ocurrir debido a tres causas fundamentales: la competencia intra e in-
terespecifica y la destruccion o transformacion de hébitats. En el primer caso, los individuos
o poblaciones que no logran asegurarse un territorio adecuado para su sustento tienden a
emigrar. Ademas, puede darse la emigracion de poblaciones enteras que son desplazadas por
nuevos competidores, a menudo introducidos por actividades humanas, que tienen una mejor
adaptacién al nuevo entorno. Por otro lado, la destrucciéon y reduccién del habitat de diferen-
tes especies, también causada por el ser humano, puede ser otra razén para la emigraciéon. En
su lucha por la supervivencia, las especies buscaran nuevos territorios, lo que a su vez puede
desencadenar un efecto domind, obligando a otras especies a desplazarse.|[15].

En el proceso emigratorio, ciertas poblaciones de una especie se ven obligadas a desplazar-



se hacia diferentes lugares en busca de condiciones favorables para su supervivencia. Si las
condiciones en el nuevo entorno son lo suficientemente distintas como para requerir adapta-
ciones y se produce una separaciéon espacial y temporal de los demds individuos de la misma
especie, puede originarse una nueva especie. La dispersiéon desempena un papel crucial en la
consolidacién y madurez de los ecosistemas, al permitir que todos los nichos ecolégicos sean
ocupados y se establezca un equilibrio dindmico de interrelaciones entre todas las formas de
vida [15].

Una tercera causa del fenémeno migratorio se origina principalmente por la busqueda de
areas propicias para el apareamiento y la reproduccién, donde exista suficiente alimento para
mantener tanto a la poblacién actual como a los nuevos individuos del grupo. Este proceso se
activa en respuesta a cambios en las condiciones fisicas, quimicas y biolégicas del entorno, asi
como a cambios en la fisiologia del animal, que a menudo son consecuencia de dichos cambios
externos.

En resumen, la migracion se debe a la necesidad de encontrar lugares adecuados para repro-
ducirse, obtener suficiente alimento y asegurar condiciones favorables para el desarrollo de los
nuevos individuos [15].

Una vez que la poblacion se encuentra en movimiento, su biisqueda llegard a su fin cuando
encuentren uno o varios lugares que les proporcionen las condiciones necesarias para garantizar
Su supervivencia.

Un modelo de flujo migratorio comtinmente se utiliza para analizar el crecimiento o la dis-
minucién de la poblacién en distintas dreas geograficas estudiadas. Dependiendo del tipo de
agentes o individuos migrantes involucrados, se pueden establecer las siguientes categorias:
Migracién humana, Migracién de especies animales, Propagacién de enfermedades y Migracion
de otros organismos [18].

1.1.4. Modelos de poblacion

Desde los inicios de la ecologia como disciplina cientifica, e incluso antes, los modelos ma-
tematicos han sido parte fundamental de sus fundamentos. Estos modelos han permitido
comprender y estudiar diversos procesos ecolégicos.

Algunos ejemplos destacados incluyen los modelos de crecimiento poblacional propuestos por
Malthus en 1798 y Verhulst en 1838, 1845 y 1847, los modelos de competencia y depredacion
desarrollados por Lotka en 1925 y Volterra en 1926, los trabajos de Gause en 1934 que
combinaron la experimentaciéon y los modelos mateméaticos en el estudio de la competencia.
Los estudios realizados por Robert MacArthur entre 1950 y 1975 y los trabajos de Hutchinson,
especialmente a partir de 1957, que contribuyeron al desarrollo de la moderna teoria del nicho
ecolégico. Estos ejemplos demuestran cémo los modelos matematicos han sido una herramienta
valiosa en la ecologia para comprender los patrones y procesos que ocurren en los ecosistemas
[17].

Los modelos matematicos desempenan un papel de gran importancia en ecologia, especial-
mente en la representacion de las variaciones de densidad de las poblaciones. Estos modelos
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tienen como objetivo expresar, a través de ecuaciones, como la densidad poblacional cambia
a lo largo del tiempo.

Estas herramientas proporcionan una valiosa ayuda para comprender y predecir los cambios
en la densidad poblacional y su impacto en los ecosistemas. Gracias a ellos, podemos obtener
una visién mas clara de la dindmica de las poblaciones y tomar decisiones informadas en la
gestion y conservacién de los recursos naturales [I7].Un ejemplo de ello es el modelo clésico
de crecimiento exponencial o modelo de Malthus, el cual es el mas basico entre los modelos
continuos de crecimiento poblacional. Este modelo establece que la tasa de crecimiento de la
poblacién es proporcional a su densidad, y estd dado por:

dz
L
z(0) = xo
dénde:
poblacién

tasa de natalidad per capita

tasa de mortalidad per capita
:  tasa de crecimiento per cépita
= b—d

N I QoK

Un modelo més realista considera que la poblaciéon no puede crecer indefinidamente y de forma
cada vez mas rapida, como lo representa el modelo exponencial. En realidad, existe un limite
al crecimiento poblacional y, al desarrollar un modelo matematico, este limite debe reflejarse
en una funcién que dependa de la densidad poblacional. La tasa de crecimiento ya no serd
constante, sino que variard en funcién de la densidad poblacional, este es el caso del modelo
logistico de crecimiento o modelo de Verhulst en el cual, la tasa de crecimiento se contempla
como una funcién lineal decreciente de la densidad poblacional. El modelo de crecimiento
(logistico) poblacional de Verhulst queda representado por:

de _ (1_9«’)
a K
z(0) = x

dénde:

x poblacién
K : capacidad de carga ambiental
r tasa de crecimiento per capita

Un modelo matematico de crecimiento poblacional debe cumplir con ciertas restricciones inhe-
rentes al fendmeno biolégico que representa. Por ejemplo, si la poblacién es nula, el crecimiento
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debe ser nulo también. Ademsds, es necesario evitar la aparicién de poblaciones negativas, que
pueden tener sentido desde el punto de vista de la ecuacién, pero no en el mundo real. Es-
ta ultima restriccién se puede solucionar mediante la aplicacién de condiciones de contorno
adecuadas o la eleccién de funciones apropiadas.

1.1.5. Planteamiento del Problema

En escenarios donde la densidad poblacional se encuentra en niveles criticamente bajos y
pone en peligro la supervivencia de una especie, se hace necesario intervenir para fomentar la
recuperaciéon de los niveles de poblacién y asegurar su supervivencia. Una estrategia razonable
en estas situaciones es la introducciéon de nuevos individuos en el habitat de la especie. En
este contexto, una estrategia natural consiste en generar un flujo migratorio que dependa del
nivel poblacional de la especie.

Como vimos anteriormente, el Huemul es una especie que encuentra en peligro de extincion
que habita en la regién andino patagénica de Chile y Argentina, los niveles de poblacién han
bajado notablemente durante los tltimos afios. En este sentido, la investigacion se enfocard en
el estudio mateméatico de cémo los nuevos individuos se integran en el habitat de una especie
mediante el flujo migratorio, el cual estd influenciado por el tamafio de la poblacién de la
especie.

En la literatura actual, no se han encontrado modelos que integren ecuaciones diferenciales
con el efecto Allee y la migracién para la especie Huemul. Dado que esta especie se encuentra
en peligro de extincion, es de vital importancia contar con herramientas que permitan simu-
lar diferentes escenarios y evaluar el impacto y la respuesta de la especie frente a diversas
perturbaciones. En este contexto, surge la pregunta sobre la posibilidad de desarrollar un
modelo que se enfoque en la dindmica poblacional del Huemul considerando el efecto Allee,
migracién y parches, lo que permitiria obtener una comprension més completa de su dindmica
y su interacciéon con el medio ambiente.

1.2. Objetivos

Objetivo General
Analizar la dindmica de un modelo matemaético para la conservacién de la especie Huemul

que se encuentra bajo efecto Allee y considera migracién.

Objetivos Especificos

1. Establecer un modelo poblacional para el Huemul que considere dos parches, efecto Allee
y una funciéon de inmigracién.

2. Analizar las propiedades cualitativas del modelo mateméatico planteado.

3. Evaluar mediante simulaciones matematicas el modelo propuesto.
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Capitulo

Marco teorico

En esta seccién se presentaran antecedentes matemaéticos relacionados con la teoria de ecua-
ciones diferenciales ordinarias. Los tépicos a tratar son la existencia soluciones de ecuaciones
diferenciales, los sistemas lineales, el polinomio caracteristico, los sistemas no lineales y el
principio de estabilidad linealizada. Este marco tedrico se sustenta en [13], [5] y [4].

2.1. Existencia de soluciones de ecuaciones diferenciales ordi-
narias y Estabilidad.

La terminologia, resultados y demostraciones realizadas en esta seccién se basan en las refe-
rencias [13] y [5].

Definicién 2.1. Sea t un escalar real, sea D un conjunto abierto en R"™! con un elemento
de D escrito como (t,x), sea f: D — R™ continua y sea & = dz/dt, la ecuacion diferencial:

z = f(t,x(t)) o, brevemente & = f(t,x). (2.1)

Decimos que x es una solucion de (2.1)) en un intervalo I C R si x es continuamente diferen-
ciable definida en I,(t,xz(t)) € D,t € I y = satisface (2.1) en I. Nos referimos a f como un
campo vectorial en D.

Teorema 2.1 (Fundamental de Existencia). Si f es continua en D, entonces para cualquier
(to,zo) € D, hay al menos una solucion de (2.1) que pasa por el punto (to,xo).

Definicion 2.2. Si ¢ es una solucion de una ecuacion dzferencwl en un intervalo I, se dice
que_ qb es una continuacion de ¢ si qﬁ se define en un intervalo I que contiene un intervalo
1, qb coincide con ¢ en I y qb satisface la ecuacion diferencial en I. Una solucion ¢ no es
continuable st no existe tal continuacion, es decir, el intervalo I es el intervalo maximal de
existencia de la solucion ¢.
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Teorema 2.2. Si D es un conjunto abierto en R f : D — R"™ es continua y ¢(t) es
una solucion de (2.1)) en algin intervalo, entonces hay una continuacion de ¢ a un intervalo
mazimo de existencia. Ademds, si (a,b) es un intervalo mdzimo de existencia de una solucion
z de (2.1)), entonces (t,z(t)) tiende a la frontera de D cuandot — a yt — b.

Definicién 2.3. Una funcién f(t,z) definida en un dominio D en R"™! se dice que es
localmente lipschitziana en x, si para cualquier conjunto acotado cerrado U en D hay un
k = ky tal que |f(t,z) — f(t,y)| < klz — y| para (t,x),(t,y) en U. Si f(t,x) es continua
y tiene primeras derivadas parciales con respecto a x en D, entonces f(t,x) es localmente
lipschitziana en x.

Definicién 2.4. Si f(t,z) es continua en un dominio D, entonces el teorema fundamental de
existencia implica la existencia de al menos una solucion de que pasa por un punto dado
(to,xo) en D. Supongamos, ademds que solo hay una solucion x(t,ty,zo) a través del punto
(to,zo) dado en D. Para cualquier (to,xzo) € D, sea (a(to,xo),b(to,x0)) el intervalo mazimal
de existencia de x(t,tg,x0) y sea E C R"2 definido por

FE = {(t,to,l’o) : a(to,xo) <t< b(to,xo), (to,xo) S D}

La trayectoria a través de (to,ro) es el conjunto de puntos en R™1 dado por (t,(t,t, o))
para t variando sobre todos los valores posibles para los cuales (t,tg,zo) pertenece a E. El
conjunto E se denomina dominio de definicion de x(t,to,xo).

Teorema 2.3. Si f(t,z) es continua en D y localmente lipschitziana con respecto a x en D,
entonces para cualquier (to,xo) en D, existe una unica solucion x(t,to, xo), x(to, to, o) = o,
de pasando por (tg,wo). Ademds, el dominio E en R"? de definicion de la funcion
x(t,to, xo) es abierto y x(t,ty, o) es continua en E.

Definicién 2.5. Sea el sistema que involucra dos ecuaciones diferenciales de la forma

dzr

dy .

Donde las funciones F y G son continuas y tienen derivadas parciales continuas an algin
dominio D del plano zy. El sistema (2.2)) no contiene de manera explicita a la variable inde-
pendiente t. Se dice que un sistema con esta propiedad es auténomo. El sistema

T = Ax,

en donde A es una matriz constante de 2 X 2, es el ejemplo mds sencillo de un sistema
autonomo bidimensional.
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Definicién 2.6. Los puntos, si los hay, en donde f(x) = 0 se denominan puntos de equilibrio
del sistema auténomo & = f(x). En esos puntos, también & =0, por lo que los puntos de
equilibrio corresponden a soluciones constantes, o de equilibrio, del sistema de ecuaciones
diferenciales. Se dice que un punto de equilibrio x* del sistema & = f(z) es estable si, dado
cualquier € > 0, existe un 6 > 0 tal que la solucion © = ¢(t) del sistema (2.2)), que ent =0
satisface ||p(0) — x*|| < 0, existe y satisface

19(0) — 27| <,

para todo t > 0. Estas proposiciones matemdticas afirman que todas las soluciones que se
inician lo suficientemente cerca (es decir, a menos de la distancia §) de =* permanecen cerca
(a menos de la distancia €) de x*. Se dice que un punto de equilibrio es inestable si es no
estable.

Definicion 2.7. Se dice que un punto de equilibrio x* es asintéticamente estable si es
estable y existe un oy, con 0 < dg < 0, tal que si una solucion ¢(t) satisface ||d(0) — z*|| < do,
entonces

lim ¢(t) = z*.

t—o00

2.2. Sistemas lineales.

La terminologia, resultados y demostraciones realizadas en esta seccién se basan en la refe-
rencia [4].

2.2.1. Sistemas lineales.

Consideremos un sistema de ecuaciones diferenciales de la forma:

d—:n = ar+b
at Y

(2.3)
% = cz+dy,

donde a, b, ¢, d son constantes (que pueden ser cero). Se dice que éste es un sistema lineal con
coeficientes constantes. Las constantes a, b, ¢, d son los coefientes. La linealidad, se refiere al
hecho de que las ecuaciones para dz/dt y para dy/dt contiénen solo primeras potencias de las
variables dependientes. Es decir, son funciones lineales de x y y. Como los coeficientes a, b, ¢, d
son constantes este tipo de sistemas del tipo (2.3 son también auténomos y por lo tanto,
las curvas soluciones localizadas en el plano de fase no se tocan. Esos sistemas tienen dos
variables de estado, por lo cual decimos que son planos o bidimensionales. Podemos emplear
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una notacién vectorial y matricial para escribir este sistema en forma mas eficiente. Sea A
una matriz cuadrada de orden 2 x 2 y sea Y el vector columna de variables dependientes,

a b T
) o

Entonces el producto de una matriz A de orden 2 x 2 y un vector columna Y es el vector

columna AY dado por:
a b| |z

La matriz A de los coeficientes del sistema se llama matriz de coeficientes. Si x y y son
variables dependientes, decimos entonces

azx + by
cr + dy

dx
t dy dt
Y dy
dt
La notacién vectorial puede extenderse para incluir sistemas con cualquier nimero n de va-
riables de estado y1,¥2, ..., y,. El sistema lineal auténomo con n variables dependientes es
dy1 .
. a11y1 +a2y2 + ... + aipYn,
dys
o a21y1 + a22y2 + ... + a2pYn,
dyn
% Gn1Y1 + @n2Y2 + - .- + Apn¥Yn.
En este caso, los coeficientes de este sistema son aii, @19, ...,ay,. Considerando Y, % y la
matriz A de orden n X n, respectivamente como,
d
Y1 dd% ail a2 ... Qip
() d o az az ... a2
Y = . ) 7y = d.t ) A= ! )
dt :
Yn % anl Aanp2 ... dpp
tenemos
ailr a2 ... Qin| |Y1 a11y1 +apy2 + ... + ainYn
dY a1 Q22 ... G2 Y2 a21Y1 + a22y2 + ... + a2y
gy = |7 TP = , e (2.5)
dt : oo : :
anl Aap2 ... dpn Yn an1Y1 + an2y2 + ... + GunYn

El nimero de variables dependientes se denomina la dimension del sistema, por lo que éste es
n-dimensional.
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2.2.2. Puntos de equilibrio de sistemas lineales.

En este apartado se hard mencién a los puntos de equilibrio de un sistema lineal % = AY.
Si bien la dimensiéon de la ecuacion es de orden n, en nuestro caso estudiaremos un
sistema lineal de dimensién 2. Comenzamos buscando las soluciones més simples, es decir, las
soluciones de equilibrio. Un punto Yy = (z0,¥0)? es un punto de equilibrio de un sistema si
y solo si el campo vectorial en Yj es el vector cero. El campo vectorial de un sistema lineal,
esta dado por

F(Yp) = AY,,

es decir, el vector en Yy se determina tomando el producto de la matriz A y el vector Yy. En
consecuencia, los puntos de equilibrio son los puntos Yj tales que

= o).

B| R e

Escrita de manera escalar, la ecuacion vectorial es un par de ecuaciones lineales:

Luego,
axy + by
cxo + dyo

axg+byy = 0
cxog+dyy = 0.

Siendo (0, y0)” = (0,0)7 una solucién de esas ecuaciones. Por lo tanto, Yy = (0,0)7 es un
punto de equilibrio y la funcién constante Y (t) = (0,0)”, Vt es una solucién del sistema lineal,
llamada solucién trivial del sistema. Cualesquier punto de equilibrio (zo, yo)T deben también
satisfacer

axg+byy = 0
cxog+dyy = 0.

Para hallarlos, suponer que a # 0, empleando la primera ecuacién, resulta:

b
Zo = ——Yo-
a

Luego, la segunda ecuacién resulta c (—%) Yo + dyo = 0, que puede escribirse como
(ad — be)yy = 0.

Entonces, yog =0 0 ad —bc = 0. Si yg = 0, se sigue que zg = 0 . Un sistema lineal tiene puntos
de equilibrio no triviales sélo si ad — bec = 0.
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2.2.3. Valores y vectores propios.

En esta subseccion mostraremos los teoremas y definiciones que se requieren para definir los
conceptos de valores propios y vectores propios.

Teorema 2.4. Si A es una matriz con det A # 0, entonces el unico punto de equilibrio para
el sistema lineal dY/dt = AY es el origen.

Definicién 2.8. Supongamos que dY/dt = AY es un sistema lineal de ecuaciones diferen-
ciales.

1) SiY(t) es una solucion de este sistema y k es cualquier constante, entonces kY (t) es
también una solucion-

2) Si Yi(t) y Ya(t) son dos soluciones de este sistema, entonces Y1(t) + Ya(t) es también
una solucion.

Mediante el principio de linealidad, se puede construir un niimero infinito de nuevas soluciones
a partir de cualquier solucién o par de soluciones dadas. La forma k1Y (t) + k2Ya(t) se llama
una combinacién lineal de las soluciones Y7 (t) y Y2(t). Con dos soluciones, podemos producir
un numero infinito de resultados formando combinaciones lineales de ellas dos.

Teorema 2.5. Supongamos que (x1,y1)? y (z2,y2)7 son dos vectores columnas linealmente

independientes en el plano. Entonces, dado cualquier vector (zo,yo)? existen ki y ko tales

que:
. [xll & [m] - lxol '
n Y2 Yo

La ecuacion anterior representa un sistema de dos ecuaciones lineales

$1]€1+$2k‘2 = X

yik1 +y2k2 = Yo.
Teorema 2.6. Supongamos que Y1(t) y Ya(t) son soluciones del sistema lineal dY/dt = AY .
Si Y1(0) y Y5(0) son linealmente independientes, entonces para cualquier condicion inicial

Y (0) = (z0,90)7 podemos encontrar constantes ki y ko tales que k1Y1(t) + ka2Ya(t) es la
solucion del problema de valor inicial

dy g
— =AY, Y(0)= .
o —ar - |

Definiciéon 2.9. Dada una matriz A, un numero A se llama valor propio de A si existe un
vector no nulo V = (z,y)T, para el cual

weap) 2]

FEl vector V' se llama vector propio correspondiente al valor propio A. Un vector propio es aquel
en que el campo vectorial apunta en la misma direccion o en la opuesta al vector mismo.

18



Definiciéon 2.10. Dada una matriz A, si V es un vector propio del valor propio X\, entonces
cualquier maltiplo escalar KV también es un vector propio para X\, es decir:

A(KV) = kAV = k(AV) = A(kV).

Determinaciéon de los valores propios.

Para hallar las soluciones caracteristicas de sistemas lineales, debemos calcular los valores
y vectores propios de la respectiva matriz de coeficientes. Es decir, hay que encontrar los
vectores V = (x,y)T tales que

T T a b
AV =A L/] = [y] = AV,con A = lc d] , (2.6)

Bl

igualdad que podemos expresar como el sistema:

se tiene

ax + by Az
cx+dy = MAy.

Este sistema tiene soluciones no triviales si y sélo si

a— A\ b
detl . d_)\]—o.

Nuestra condiciéon de determinante para una solucién no trivial de la ecuacién AV = AV
puede plantearse asumiendo que det(A — \I) = 0.

Definicién 2.11. Para hallar los valores propios de la matriz A dada en (2.6), debemos
determinar los valores de A para los que

det(A — AI) = 0.

Luego el determinante resulta:

det [a? de] =(@=2)(d=A) —be=>—(a+d)A+(ad—bc) =0.  (27)

El polinomio obtenido se denomina polinomio caracteristico del sistema. Sus raices son los
valores propios de la matriz A.
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Teorema 2.7. Supongamos que la matriz A dada en tiene un valor propio real A con
vector propio asociado V. Entonces el sistema lineal dY/dt = AY tiene la solucion carac-
teristica

Y (t) =MV

Si A1 y Ao son wvalores propios reales y distintos, cuyos vectores propios respectivos son Vi y
Va, entonces las soluciones Y1 (t) = Mty y Ya(t) = eV, son linealmente independientes y
Y (t) = eMtVy 4 eM2V;, es la solucion general del sistema.

2.2.4. Puntos de equilibrio estables e inestables, clasificacién

Analizaremos el comportamiento de un sistema lineal de orden 2 x 2 con dos valores propios
distintos, no nulos y reales A\ y Ao.

Teorema 2.8. Sea Y (t) una solucion real de un sistema lineal con matriz de coeficientes A
de orden 2 x 2 tal que % = AY.

a) Si A <0 < Ao, entonces el origen es un punto silla. Hay dos lineas en el diagrama
de fase que corresponden a la solucion caracteristica. Las soluciones tienden a (0,0)
cuando t se incrementa, y las que se encuentran sobre la otra linea se alejan de (0,0).

b) SiAi < A2 <0, entonces el origen es un punto de equlibrio atractor. Todas las soluciones
tienden a (0,0) cuando t — oo y la mayoria de ellas tienden a (0,0) en la direccién del
vector propio As.

c) Si0 < A2 < A1, entonces el origen es un punto de equilibrio repulsor. Todas las solu-
ciones se alejan de (0,0) cuando t — 0o y una gran parte de ellas lo hacen siguiendo la
direccion del vector propio Ao.

Teorema 2.9. Asumiendo que % = AY es un sistema lineal con valores propios complejos
AM=a+if yr=a—1i8,6# 0. Entonces la solucién compleja general del sistema tiene la
forma

Y (t) = e (cos Bt + isin 8t)Yy,

donde Y (0) es un vector propio complejo de la matriz A.

Teorema 2.10. Sea un sistema lineal ‘% = AY que tiene valores propios complejos dados
por A1 =a—+if y Ao =a—1if, con B # 0, entonces,

a) Si a < 0, las soluciones se mueven en espiral hacia el origen, el cual se denomina un
punto de equilibrio atractor espiral.

b) Sia >0, las soluciones se mueven en espiral alejdndose del origen, el cual se denomina
un punto de equilibrio repulsor espiral.

c) Sia =0, las soluciones son periddicas. Aqui el origen se llama un centro.
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Teorema 2.11. Sea un sistema lineal % = AY donde A es la matriz de coeficientes de orden
2 x 2,cuyos valores propios son iguales, es decir, A = A\ = A2, entonces la solucion general
del sistema estd dada por,

Y(t) = k‘le/\tv1 + kge)‘t(tvl + VQ) = GAt(k1V1 + szg) + te*tl@Vl.
Ademas se tiene que,
a) Si A <0, entonces el punto de equilibrio en el origen es un atractor.

b) Si A >0, entonces el punto de equilibrio en el origen es un repulsor.

Teorema 2.12. Sea un sistema lineal % = AY, tal que la matriz A tiene valores propios
A1 =0 y Ao # 0. Supongamos que Vi es un vector propio para A1 y Va es un vector propio
de Xo. En este caso tenemos dos valores propios reales y distintos y la solucion general del
sistema es

Y (t) = k1 Vi + ko2 V5.

a) Si M1 < 0 entonces el seqgundo término en la solucion general tiende a cero cuando t
crece, por lo que la solucion Y (t) = k1V1 + koe?2tVy, tiende al punto de equilibrio k1V
a lo largo de una linea paralela a Vs.

b) Si A1 > 0, entonces la solucion de arriba se aleja de la linea de puntos de equilibrio
cuando t crece.

2.2.5. Traza y determinante.

Supongamos que comenzamos con el sistema lineal dY/dt = AY, donde A es la matriz

sl

El polinomio caracteristico para A es det(A —AI) = A\?> — (a +d)\+ad — bc. La cantidad a +d
se llama traza de la matriz A y como sabemos, la cantidad ad — bc es el determinante de A. El
polinomio caracteristico de A entonces puede abreviarse como \> — TA+ D, donde T = a +d
es la traza de A y D = ad — bc es el determinante de A. Como el polinomio caracteristico de
A depende sblo de T'y D, se infiere que los valores propios de A también estan subordinados
a esos valores.

Si resolvemos la ecuacién caracteristica A> — T'A + D = 0, obtenemos los valores propios

_ T++\T?2—4D

A
2

Al examinar el discriminante, los valores propios son complejos conjugados si 72 — 4D < 0,
son repetidos si 72 — 4D = 0, y son reales y distintos si 72 — 4D > 0.
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Por otro lado, si observamos la figura[2.1] tenemos que el eje T' corresponde a %a linea horizontal
y el eje D a la linea vertical. Entonces la curva 72 —4D =0 , o bien D = TT es una parabola
concava hacia arriba en este plano. La llamamos la pardabola de raiz repetida. Arriba de ésta

encontramos T2 — 4D < 0 y abajo de ella T2 — 4D > 0.

Figura 2.1: Plano D v/s T, la regién sombreada corresponde a 7% — 4D > 0

Si T? — 4D < 0, el punto (T, D) se encuentra arriba de la pardbola de raiz repetida, entonces
sabemos que los valores propios son complejos y que su parte real es T'/2. Tenemos un atractor
espiral si T' < 0, un repulsor si 7' > 0 y un centro si 7' = 0. En el plano traza-determinante
el punto (T, D) esta localizado arriba de la pardbola de raiz repetida. Si (T, D) estd a la
izquierda del eje D, el sistema correspondiente tiene un atractor espiral, y si se encuentra a
la derecha del eje D, el sistema tiene un repulsor espiral. Si (T, D) se encuentra sobre el eje
D, entonces el sistema tiene un centro. También es posible distinguir diferentes regiones en
el plano traza-determinante donde el sistema lineal tiene valores propios reales y distintos.
Podemos observar que aqui (7, D) se encuentra abajo de la pardbola de raiz repetida. Si
T? —4D > 0, los valores propios son

T+VT?—-4D

A=
2
Si T > 0 el valor propio L3vI==4D VT;M, es la suma de dos términos positivos y por tanto es

. . . . /T2 _
positiva. En este caso, solo tenemos que determinar el signo del otro valor propio w

para conocer el tipo de sistema.

Si D = 0, este valor propio es cero, por lo que nuestra matriz tiene un valor propio cero y
otro positivo. Si D > 0, entonces T? — 4D < T?2. Como estamos considerando el caso en que
T > 0, tenemos VT2 —4D < Ty T_—VT;J‘D > 0. En este caso, ambos valores propios son
positivos y, como consecuencia, el origen es un repulsor.

Por otra parte, si T > 0 pero D < 0, entonces T2 — 4D > T?, de manera que V12 —4D > T
y T—yT7-4D ”7212_4[) < 0. En esta situacion especifica el sistema tiene un valor propio positivo y otro
negativo, por lo que el origen es un punto silla.
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En caso de que T < 0y T? — 4D > 0, tenemos:
a) Dos valores propios negativos si D > 0.
b) Un valor propio negativo y uno positivo si D < 0.
¢) Un valor propio negativo y un valor propio cero si D = 0.

Por dltimo, a lo largo de la pardbola de raiz repetida tenemos valores propios repetidos. Si
T < 0, ambos valores propios son negativos, si 7' > 0, son positivos y si T' = 0, son cero.

Remark 2.1. Las cuatro curvas solucion especiales que tienden hacia un punto silla cuan-
dot — o0 ot — —o0 se denominan separatrices. Y tienen una importancia especial porque
separan las soluciones con diferentes comportamientos. Las separatrices estables son aque-
llas donde las soluciones tienden hacia el punto silla cuando t — oo mientras que en las
separatrices inestables las soluciones tienden hacia el punto silla cuanto t — —oo.

2.3. Sistemas no lineales y Principio de estabilidad linealizada.

En esta seccién se estudiardn los sistemas no lineales auténomos, comenzaremos mostrando
cémo puede aproximarse un sistema no lineal a un punto de equilibrio por medio de un
sistema lineal. Este proceso es conocido como linealizacién y es uno de los procedimientos que
se aplican con mayor frecuencia.

2.3.1. Linealizacion.

Consideremos la forma general de un sistema no lineal:

dx
dy
o = g(x,y).

Supongamos que (g, y0)”
lo que sucede con las soluciones cerca de (zo,yo

(70,70)" . Introducimos nuevas variables

es un punto de equilibrio para este sistema. Queremos entender
)T7 es decir, linealizar el sistema cerca de

U= —=2o , V=Y—Yo,

que mueven el punto de equilibrio al origen. Si e y estan cerca del punto de equilibrio
(z0,0)", entonces u y v tienden a cero. Como x = u+xo y y = v + yo vy los ntéimeros zqg y %o
son constantes, el sistema escrito en términos de v y v es
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du — M:dj = f(m,y)Zf(l’O‘f‘UayO‘i‘U)

dt dt dt
dv _ dly—wy) _dy _ _
= = 7 = = 9@y =gl tuyo+o).
Por tanto, tenemos
du
i f(zo+u,y0 +v)
(2.8)
B~ ot um+o)
ar g{To T U, Yo T~ V).
Siu = v = 0, el lado derecho de este sistema desaparece, por lo que hemos movido el

punto de equilibrio al origen en el plano uv. Ahora, estudiaremos la funcién analizando la
aproximacion lineal, la cudl estd dada por el plano tangente para funciones de 2 variables, por
lo tanto tenemos:

0 0

e+ s+ 0) = Fao ) + (G Go.0) ) wt (G (a0,

cuyo lado derecho es la ecuacién para el plano tangente a la gréfica de f en (xg,yp). Podemos
entonces reescribir el sistema 2.8 como:

% = f(wo,y0) + (gi(xo,yOO U+ (g]yc(l'o,yo)> vt
&= gtoun) + (Fha0m))u+ (o)) o+

Como f(zo,y0) = 0y g(zo,y0) = 0, podemos usar la notacién matricial para escribir el sistema
en forma breve:

dut [ v Y @om)
E O 0, Y0 8y 0, Y0 u
— —+ ...
W% o m0) g0y | L
dt 833 0, Y0 ay 0, Y0

La matriz de 2 x 2 de las derivadas parciales en esta expresién se llama matriz jacobiana del
sistema en (xo, y0). En consecuencia, el sistema linealizado en el punto de equilibrio (xg, yO)T
es:
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Empleamos la linealizacién para estudiar el comportamiento de soluciones del sistema no lineal
cerca del punto de equilibrio (zg,yo)?. Observamos que para crear el sistema linealizado, sélo
necesitamos conocer las derivadas parciales de las componentes del campo vectorial en el
punto de equilibrio.

Remark 2.2. Considerando la clasificacion de los puntos de equilibrio, ademds de la linea-
lizacion de un sistema no lineal, se resume en el cuadro (2.1) la estabilidad de los puntos de
equilibrio para las distintas condiciones de los valores propios A1 y Ao de un sistema planar:

Cuadro 2.1: Estabilidad e inestabilidad de los sistemas lineales y casi lineales [5]

Sistema Lineal Sistema casi Lineal
AL, A2 Tipo Estabilidad Tipo Estabilidad
AL > X >0 N Inestable N Inestable
A< A<O0 N Asintéticamente estable N Asintoticamente estable
Ao >0 < A1 PS Inestable PS Inestable
Al=X>0 NEoN Inestable NE, N o PEs Inestable
Al =X<0 NEo N Asintéticamente estable NE, N o PEs Asintéticamente estable
A, Ao = Atip
A1 >0 PEs Inestable PEs Inestable
A1 <0 PEs Asintoticamente estable PEs Asintéticamente estable
A =idp, N\ = —ip C Estable C o PEs Indeterminada

Tipo: N: nodo ; NE: nodo estrella ; PS: punto silla ; PEs : punto espiral ; C: centro.
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Capitulo 3

Metodologia

El desarrollo de esta investigacion implica seguir una serie de etapas secuenciales que con-
duzcan al objetivo de analizar la dindmica de un modelo matematico para la conservacién de
la especie Huemul, teniendo en cuenta el efecto Allee, crecimiento logistico y migracién entre
parches acoplados.

Dado que el Huemul se encuentra en una situacién critica de peligro de extincién, resulta de
vital importancia contar con herramientas que posibiliten la simulaciéon de diversos escenarios
y la evaluacién del impacto y la respuesta de la especie frente a distintas perturbaciones.

En primer lugar, se llevara a cabo una busqueda de antecedentes bibliograficos que respalden
el desarrollo del modelo propuesto. Esta etapa permitird recopilar informacién relevante y
fundamentos tedéricos para la construccion del modelo. Posteriormente, se procedera a elaborar
un modelo poblacional para el Huemul que considere dos parches, efecto Allee y una funcién de
inmigracion. Se buscara establecer relaciones y ecuaciones que representen de manera precisa
la dindmica del sistema. Una vez que el modelo matematico esté construido, se realizard un
estudio analitico de las propiedades cualitativas del modelo, tales como puntos de equilibrio,
linealizacién del sistema de ecuaciones diferenciales no lineal y la estabilidad local de un punto
de equilibrio.

Finalmente, se llevaran a cabo simulaciones utilizando diferentes combinaciones de parame-
tros. Esto permitird explorar diversos escenarios y obtener resultados que ayuden a com-
prender el comportamiento de la especie y evaluar su respuesta frente a perturbaciones. Es
importante destacar que cada etapa serd realizada de manera rigurosa, con el objetivo de
asegurar la calidad y la validez del modelo propuesto.

En la figura se muestra el diagrama de la metodologia a emplear para la presente
investigacién.
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3.1. Metodologia de modelamiento matematico

Ante la presencia del fenémeno del Efecto Allee, resulta necesario intervenir con el objetivo de
promover la recuperacién de los niveles de poblacién que permitan la supervivencia natural
de la especie. Una estrategia empleada consiste en la introduccién de nuevos individuos en
el habitat de la especie afectada [19]. En este contexto, una estrategia natural consiste en
establecer un flujo migratorio que esté determinado por el nivel poblacional de la especie. De
esta forma, se fomenta una migracién mas intensa en momentos de baja densidad poblacional,
mientras que se detiene por completo cuando la poblaciéon alcanza la capacidad de carga
del medio ambiente. Dicha estrategia permite regular la distribucién y el movimiento de los
individuos de manera acorde a las condiciones del entorno, contribuyendo asi a la recuperacion
de la poblacién [19].

Cabe mencionar que existe una amplia variedad de estudios que abordan el anélisis y modelado
del efecto Allee en enfoques deterministas, por ejemplo [T}, B, 8, 23]. Estos modelos emplean
ecuaciones diferenciales ordinarias para representar y comprender la dindmica poblacional.
Es relevante destacar que una de las posibles aproximaciones para abordar el efecto Allee, en
cual la baja tasa de encuentros entre individuos juega un papel fundamental, es mediante el
uso de ecuaciones diferenciales en derivadas parciales [19].

El efecto Allee y el crecimiento logistico de una poblacién se modela [I], mediante la ecuacién

de la forma,
x T
b= 1-—=|)(—-1).
r=re(1-5) (5 )

Ademés podemos plantear un modelo de metapoblacién, ver [6l 9, [14] 21]

Z1(t) = fi(@1) — maxs + maze
xé(t) = f2($2) — MoXo +mMmix1.

La metapoblacion representada en el modelo estd formada por distintos parches donde co-
existen poblaciones de la misma especie, aunque con tamanos poblacionales diversos. En cada
parche, estas poblaciones alcanzaran su capacidad maxima de acuerdo con las condiciones
ambientales especificas. Como resultado, se genera una dindmica poblacional que implica el
desplazamiento de individuos de un parche a otro, lo que a su vez conlleva a la colonizacién
o abandono de dichos parches. Estos movimientos se llevan a cabo a través de corredores que
conectan los distintos parches.

Asumiremos que cuando la poblacién aumenta hasta alcanzar la capacidad de carga, la inmi-
gracién es nula. Mientras que cuando la poblacién disminuye a cero, la inmigracién aumenta.
En base a las ecuaciones y las hipdtesis previamente mencionadas, el modelo para describir la
dindmica de poblaciones se expresa mediante el siguiente sistema de ecuaciones diferenciales:
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m

Z1(t) = rmmz (1 — ;&) (331 — 1) + zof (z1)

Za(t) = romwe (1 — Z) —xaf(z1).

3.2. Metodologia de aplicacion de las teorias matematicas

Se demostrara la existencia de soluciones del modelo empleando los teoremas afines existentes
en la literatura [4] , [13]. En particular un problema de valor inicial con dato inicial positivo
genera una solucién no negativa.

Se llevara a cabo un estudio cualitativo del sistema no lineal mediante la determinacién de
los puntos de equilibrio. Posteriormente, se procedera a realizar la linealizaciéon correspon-
diente con el objetivo de obtener el polinomio caracteristico, el cual nos brindara informacion
sobre los valores propios del sistema. Esta caracterizacion de los puntos de equilibrio nos per-
mitird analizar la estabilidad de los mismos y, a su vez construir los campos de direcciones
correspondientes. [4].

3.3. Metodologia de aplicacion de metodos numéricos

Las simulaciones matematicas para el modelo con dos parches, se realizaran para analizar
y evaluar el modelo propuesto, mediante las funciones disponibles en matplotlib.pyplot. Los
campos de direcciones y los puntos de equilibrio se representaran mediante programa Geoge-
bra.

3.4. Discusion Metodoloégica

Los fundamentos de nuestro modelo matematico estdn de acuerdo con la literatura abordada
acerca del efecto Allee, ademds si consideramos la presencia de dos parches y una funcién
de inmigracién, nuestro modelo es coherente con aquellos de metapoblaciéon. Vale la pena
reconocer que nuestro enfoque es determinista y no consideramos un enfoque espacial de la
poblacion. Este aspecto podria ser estudiado e incluido en un trabajo futuro, en este sentido se
podrian considerar un modelo basado en ecuaciones en derivadas parciales. Ademas el estudio
de las propiedades cualitativas de un sistema planar suele realizarse por medio del estudio de
la estabilidad de sus puntos de equilibrio. Lo anterior estd acorde con diferentes trabajos en
la materia [12] , [19].

Diferentes trabajos han considerado una especie con efecto Allee, en nuestro caso estamos
considerando cémo prevenir la extincién bajo el efecto Allee lo cual es novedoso. En este
trabajo, se amplia el modelo estudiado por [19] a un modelo de dos parches, ademas de
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emplear técnicas diferentes a las utilizadas en el articulo antes mencionado, para abordar el
sistema de ecuaciones diferenciales.

Por otro lado, en [12] consideran el analisis de un modelo depredador-presa derivado del modelo
Leslie-Gower, donde el efecto Allee en el modelo contempla una funcién de crecimiento de la
presa. Se demuestra que el efecto Allee modifica significativamente la dindmica del sistema
original. El modelo es bidimensional y los autores demostraron la existencia de soluciones
no negativas generadas a partir de una condicién inicial positiva. Ademads, determinaron los
puntos de equilibrio de la ecuacién y se estudié la linealizacién del sistema de ecuaciones
diferenciales no lineal. Junto a ello, demostraron la existencia de subconjuntos de pardmetros
para los cuales el sistema puede tener Bifurcacién de Bogdanov-Takens, Curvas homoclinicas,
Bifurcacién de Hopf y la existencia de dos ciclos limite. El alcance de nuestra metodologia
no considera un estudio acabado de las bifurcaciones, solo la estabilidad de los puntos de
equilibrio mediante la linealizacion de la ecuacién diferencial.
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Capitulo 4

Resultados

En este capitulo, se exponen los resultados fundamentales de la presente investigacion, que
presenta un modelo matemé&tico que incorpora dos parches ecolégicos, el fendémeno Allee y una
funcién de inmigracion especifica para la especie Huemul. La exposicion inicia con el analisis
del modelo propuesto para dos parches, detallando sus propiedades cualitativas y destacando
los resultados mas relevantes obtenidos a través del campo de direcciones y simulaciones
numéricas.

4.1. Formulacién del modelo
El modelo propuesto se construyé en base a la ecuaciéon de crecimiento logistico de una

poblaciéon y una expresién que representa el efecto Allee. Junto con ello se incorpora una
funcién migracion de la forma,

f =ry(1- ).

El sistema de ecuaciones diferenciales que se obtiene es el siguiente:

y = ry<1—i>—ry<1—[${> 0 (1)

donde z(t) e y(t) representan las poblaciones en el tiempo ¢, K es la capacidad de carga del
medio, m representa el umbral Allee y r corresponden a las tasas intrinsecas de crecimiento
de x e y respectivamente.
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4.2. Equilibrios del modelo

Se procedié a determinar los puntos de equilibrio comenzando con igualar la segunda ecuacion
de (4.1) a cero, para luego despejar la variable y:

of(1-2)- (- 7))-»

de donde obtenemos,

El valor obtenido y = 0 lo reemplazamos en la primera ecuacién de (4.1)):

(-F) ()

luego,
=0 , z=K , xz=m.
Por lo tanto, obtenemos los puntos de equilibrio: P;(0,0) , P(K,0) , Ps3(m,0).
De la ecuacién (4.2))
YT
m K ’
obtenemos e
= 4.3
y= (4.3)

Ahora reemplazamos la ecuacion (4.3) en la primera ecuacion de (|4.1):

x x mx x
1—-—=)(—-1 —|1-= )=
e(i-7) (G- (-%) -0
factorizamos esta ecuacion por (K — z) resulta:
re (x rmae
De la ecuacién (4.4) obtenemos:

r =K, (4.5)

re (x rmz
—|—-1 =0. 4.
K (m >+ K? 0 (46)

Luego, reemplazamos (4.5)) en la segunda ecuacién de (4.1) y obtenemos: y=0ey=m.
Asi se obtienen los puntos de equilibrio (K,0) y (K, m), pero (K,0) es igual a P». Por lo tanto
el cuarto punto de equilibrio es Py (K, m).
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Desarrollamos la ecuacién (4.6) :

se tiene

obtenemos:

=0, (4.7)

T=m= (4.8)

Reemplazamos (4.7) en la segunda ecuacién de (4.1)) y obtenemos y = 0, luego se obtiene el
punto de equilibrio P;(0,0) encontrado anteriormente.

Ahora, reemplazamos (4.8) en (4.3) obtenemos:

Por lo tanto obtenemos el punto de equilibrio Ps(m — %=, &= — %)
Los puntos de equilibrio obtenidos a analizar son los siguientes:

2 2 3
P1(070)7 PZ(K7O)7 P3(m7 0)7 P4(K7m)7 P5 <m_ Ty T~ > .

4.3. Analisis de estabilidad local de los equilibrios

Para analizar la estabilidad de las soluciones obtenemos las derivadas parciales respectivas del
sistema de ecuaciones diferenciales (4.1)), resulta la matriz:

o swtr dar vy g T
S |m ""Km " K K "V K
rY 2ry  rx

K m+K

Y se define la ecuacidon caracteristica como:
|J — M| =0.
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a) Anadlisis para el punto (0,0)

Al evaluar el punto de equilibrio en la matriz J resulta:

J(0,0)7 = [_o o] .

La ecuacion caracteristica queda definida como:

—r—A r
‘ 0 0— /\‘ =0
Siendo el polinomio caracteritico obtenido:
A4+ A = 0.
Por lo tanto, tenemos que los valores de A corresponden a Ay = 0y Ay = —r < 0

como los valores propios son reales y distintos, el punto (z,y)? = (0,0)7 es inestable y
corresponde a un punto silla.

b) Anaélisis para el punto (K,0)

Al evaluar el punto de equilibrio en la matriz J resulta:

—+r -r
JIK,0) = ™

0 r

La ecuacion caracteristica queda definida como:

K
e
m =0.
0 r—A
Siendo el polinomio caracteritico obtenido:
K Kr?
)\2+)\<T—27‘) )
m m

Por lo tanto, tenemos que los valores propios son reales y distintos, y corresponden a
M=r>0y A =r— % =r(l-— %) < 0, por la tabla (2.1)) el punto de equilibrio
(z,9)T = (K,0)T es inestable y corresponde a un punto silla.
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c) Anadlisis para el punto (m,0)

Al evaluar el punto de equilibrio en la matriz J resulta:

La ecuacion caracteristica queda definida como:

LY _m)
K " K)|l—o

r
0 — = A
K

Siendo el polinomio caracteritico obtenido:

mr2 m2r2

2— _— =
A A+ % e 0.

Por lo tanto, tenemos que los valores de A corresponden a

\/ 9 dmr?  4m?2r?
r+4/re— + —
A =

K K2 rm
=r - —
2 K
y
9 4mr? . 4m?2r?
o VK TR m
2 = 9 — K y
como \; =7 — 2 =7r(1-2) >0y A = >0, los valores propios son reales,

positivos y distintos, por la tabla (2.1 el punto de equilibrio (z,y)7 = (m,0)T es un
punto fijo inestable y corresponde a un nodo.

d) Anadlisis para el punto (K, m)

Al evaluar el punto de equilibrio en la matriz J resulta:

Kr mr
—_ - — 0
T m K
J(K,m)" =
rm .,
K

La ecuacion caracteristica queda definida como:
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Siendo el polinomio caracteritico obtenido:

K m K m
2 o e 2 (> A

Por lo tanto, tenemos que los valores de A corresponden a:

v [ )

weg [ R )

Para determinar la naturaleza de los valores propios, se procede a analizar el discrimi-

nante ) )
K m K m
N=—+6+——4— —4—.
m2+ +K2 m K

Analizaremos este discriminante haciendo v = %, generando la funcién:
fu) =ut — 4u? + 6u? — du +1,

cuya grafica estd dada en la figura (4.1)).

Wy

]
\ a x

0 1 2 3

(1,0)

Figura 4.1: Gréfica de la funcién f(u) = u* — 4u? 4 6u? — 4u + 1
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Analizamos la grafica de esta funcion y observamos que,

dl) Si f(u) = 0 entonces su tnica raiz u = 1 y se sigue que % = 1 entonces K = m, lo
que representa una contradicciéon puesto que K > m. Luego A # 0.

d2) Notamos que f(u), funcién polinémica de grado cuatro, es céncava hacia arriba
con unica interseccién en el eje X, el punto (1,0) luego A > 0.

Entonces se sigue que:

<5+2>2_4.<5_1+Z>>0. (4.9)

Desarrollando la desigualdad, (4.9)

(5+). > 4 (K+n-1)
(5+) > a(Rep)>a(Bri-1)
2
(E+2) 4-(E+m).
De donde se sigue que,
%—F% > 4. (4.10)

Considerando que 7 es un valor muy pequeilo, entonces por (4.10) obtenemos K > 4m.

De acuerdo el anélisis anterior, concluimos que si A > 0y K > 4m, los valores propios
son reales, distintos y negativos, por la tabla (2.1) el punto de equilibrio dado por
(z,)7 = (K,m)T es un nodo asintéticamente estable (atractor).

Anailisis para el punto <m - — — =

Al evaluar el punto de equlibrio en la matriz J resulta:

Tm rm2 rm3 rm 'I‘TI’L2
m2 m2 m3\T T3 E 3R 2% Tk tRe
JIm—-——,——-—] =
2
K K K rm?2 _ rm3 _rm rm?
K? K3 K K?
La ecuacion caracteristica queda definida como:
7.,_3@_'_ rm2_ rm3_)\ r_m_'_TmQ
K K? K3 K K?
=0.
rm? _ rm3 _rm 4 rm A
K? K3 K K?
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Siendo el polinomio caracteritico obtenido:

K Kz T2y ¥ Pt B s 0

2 3 2 2,2 2,3 2,4 2,5
rm rm rm rm rm rm rm rm
A2+<—r+4—4 ))\—

Para determinar la naturaleza de los valores propios, se procede al siguiente anélisis de
la ecuacién de segundo grado de la forma az? + bz + ¢ = 0, donde,

rm ’f’m2 rm3 7"2m 7"2m2 T2m3 r2m4 T2m5

a=l b= A e R s T B i B TR

Ahora estudiaremos el parametro b de la ecuacion de segundo grado, para analizar los
casos b =0,b >0y b < 0. de esta forma podremos determinar la naturaleza de los
valores propios A1 y Ao.

Caso I. Analizamos cuando b = 0, es decir,

2 3
rm rm rm
b=—1r4+4——-4—4+2—7=0
r+ K K2 + K3 )
dividiendo por r se obtiene:
2 3
m m m
—144—=—-4—=4+2—=0
+ K K? + K3 ’
hacemos u = % generando la funcién :
fu) =2u® — 4u® + 4u — 1, (4.11)

cuya grafica estd dada en la figura (4.2):

251Y
2

15

(0,35;0)

Figura 4.2: Gréfica de la funcion f(u) = 2u® — 4u® + 4u — 1

Observamos que cuando u = 0.35, es decir, m = 0.35K se tiene que b = 0.
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Se sigue que,

A2 e 22 r*m _37“2m2 +47“2m3 _3r2m4 +r2m5 o
K K2 K3 K* K>
Obtenemos
r2m r2m?2 r2m3 r2m*  r?mb
)\:j:ﬁ:i\/K -3 72 +4 03 -3 o o
Examinamos el signo de ¢ suponiendo que ¢ = 0, es decir,
r’m _3 r2m? 44 r2m3 _3 r2m? n r2mb —0,
K K2 K3 K* K>
multiplicando por % se sigue que,
2 3 4
R S RGN S L)

K K? K3 K4

Hacemos u = % generamos la funcién
g(u) = u* — 3u® + 4u® — 3u+ 1,

cuya grafica estd dada por la figura (4.3))

Figura 4.3: Grafica de la funciéon g(u) = u* — 3u3 + 4u? — 3u + 1

De la figura (4.3) se infiere que si u = 1, entonces m = K, que es una contradiccién y
luego ¢ # 0, mas atin de la misma figura se aprecia que ¢ > 0.
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Finalmente los valores propios

- r’m 5 r2m? : r2m? s r’m*  r?mb -
K K? K3 K* K>
N — r’m 5 r2m? A r?m?3 5 r’m*  r?md 0.
K K? K3 K* Kb

Caso II. Analizamos cuando b > 0. La funcién polinémica de grado tres, dada en (4.11)),
es concava hacia arriba para el intevalo ]0.35, +-o00[. Concluimos que el valor b es positivo

cuando u €]0.35, 00|, luego: T > (.35, sin embargo debemos considerar la condicién
% < 1; por lo tanto % €]0.35, 1[. Analizado lo anterior, tenemos:

i) Sib>0con % €]0.35, 1[.

1 1
A= g (bt VP —dac) . hg =5 (=b— VP~ dac).

Realizando el anilisis del discriminante

m? m3 m* mP mO

20 +20— — 12 +4

m
K2 w0 T P

A=1—-14 —
K K?

Analizaremos este discriminante haciendo v = %, generando la funcién:

flu) =4u —120° +20u* — 20u® + 124? — 4u + 1,

cuya grafica estd dada en la figura (4.4)), que nos muestra A = b — 4ac > 0. Asi
obtenemos 2 valores propios distintos y reales.

Yy
3

Figura 4.4: Gréafica de la funcién f(u) = 4u® — 12u’ + 20u* — 20u3 + 12u? — 4u + 1.
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Para analizar el valor propio A\; supondremos que /b2 — 4ac < b, luego ¢ > 0.
Como

r’m r2m? r2m3 r’m*  rZmd
c=— +3 —4 +3 — ,
K K? K3 K* Kb
se sigue que:
2 3 4 5
mamt mt o mt m

_—m
Hacemos u = %,

—u5+3u4—4u3+3u2—u>0,

factorizamos por u,

u(—ut + 3u® — 4u? + 3u —1) > 0,

obtenemos,
u>0 | —ut +3u? — 4+ 3u—1>0.

Construimos la funcién f(u) = —u* + 3u® — 4u? + 3u — 1, cuya grafica se muestra

en la figura (4.5):

Figura 4.5: Grafica de la funcién f(u) = —u* 4+ 3u® — 4u® + 3u — 1.

Como la funcién f(u) es céncava hacia abajo, claramente se observa que ¢ < 0,
luego se debe cumplir que —b + v/b? — 4ac > 0, por lo tanto el valor propio A\ es
positivo. Por otro lado, b > 0 entonces la expresiéon —b — v/b2 — 4ac < 0, luego el
valor propio Ay es negativo.

i) Sib<0con = €]0,0.35[.
K
1 1
A= 5(—b+ Vb2 —dac) , A= 5(—()— Vb? — dac).
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Como b < 0 entonces la expresién —b + Vb2 — 4ac es positiva, por lo tanto el
valor propio A1 es positivo. Por otra parte, como —b > 0 entonces se tiene que la
expresion—b — /b2 — 4ac es negativa, por lo tanto el valor propio Ay es negativo.

Finalmente, se concluye que los valores propios son reales y distintos, por la tabla (2.1)

T
el punto de equilibrio (z,y)T = (m — %2, e = g—i) es un punto silla.

4.4. Campo de Direcciones

En esta seccién se mostrara el cuadro con los valores de cada parametro y la simulacién del
campo de direcciones mediante sofware Geogebra para 4 puntos de equilibrio del sistema de
ecuaciones diferenciales:

» Punto de equilibrio (z,y)T = (K, m)T atractor estable, 0 <7 <1y K > 4m.

Cuadro 4.1: Pardmetros simulacién modelo
Parametros Descripcion Valores

r Tasa intrinseca per capita 1
m Umbral Allee 20
K Capacidad de carga ambiental 90
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Figura 4.6: Punto de equilibrio (K, m)”
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» Punto de equilibrio (x,3)” = (K,0)7 inestable, 0 <7 <1y % > 1:

Cuadro 4.2: Pardmetros simulacién modelo
Parametros Descripcion Valores

r Tasa intrinseca per capita 0.5
m Umbral Allee 30
K Capacidad de carga ambiental 40
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Figura 4.7: Punto de equilibrio (K,0)7

» Punto de equilibrio (z,3)? = (m,0)7 inestable, 0 < r <1 ; r(1 — 2)y>0;2 >0y
K
= > 1.
m

Cuadro 4.3: Pardmetros simulacién modelo
Parametros Descripcion Valores

r Tasa intrinseca per capita 0.9
m Umbral Allee 20
K Capacidad de carga ambiental 100
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Figura 4.8: Punto de equilibrio (m, 0)”
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2

» Punto de equilibrio (z,y)” = (m — e = %)T inestable, 0 <7 <1y 0.35 < 2 < 1.

)

Cuadro 4.4: Pardmetros simulacién modelo
Parametros Descripcion Valores

r Tasa intrinseca per capita 1
m Umbral Allee 35
K Capacidad de carga ambiental 70
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Figura 4.9: Punto de equilibrio (m —
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4.5. Simulaciones numéricas

Para las simulaciones numéricas del modelo propuesto se considerd el punto de equilibrio
(z,y)T = (K,m)T con las condiciones 0 < r < 1y K > 4m, los valores de cada parametro
estan sefialados en cada figura, realizando un total de 2 simulaciones.

Aproximacion numérica

120

1004

80 1

60 1

Poblacion

40 4

20 4 \/

0 20 40 60 80 100
Tiempo

Figura 4.10: Poblacién v/s Tiempo
r =10,8;m = 20; K = 100 ; parche 1 : linea roja ; parche 2: linea azul

Aproximacién numérica
120

1004

80 4

60 1

Poblacion

404

"

0 20 40 60 80 100

Tiempo

Figura 4.11: Poblacién v/s Tiempo
r=20,5m = 25; K = 110 ; parche 1: linea roja ; parche 2: linea azul
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Capitulo 5

Conclusiones

El modelo propuesto en este trabajo se fundamenta en base a las ecuaciones de crecimiento
poblacional, crecimiento logistico y una expresion matematica que representa el efecto Allee
fuerte, junto con ello una funcién migraciéon f(z,y) = ry(1 — %), desde un parche ecologico
2 (reserva de huemules) hacia un parche ecologico 1. En este escenario, el parche ecologico 1
exhibe una poblacién considerablemente reducida en comparacién con su capacidad de carga,
situdndose por debajo del umbral Allee, es decir, adoptando un comportamiento logistico con
efecto Allee. Cabe senialar que no existen modelos matematicos previos aplicados y relaciona-
dos al estudio de la especie Huemul. Los parametros fundamentales en el modelo corresponden:

= K : Capacidad de carga ambiental.
= m : Umbral Allee.

» 7 : Tasa intrinseca de crecimiento poblacional.

El objetivo de la funcién migracion f(z,y) = ry(1 — £) es evitar la extincién de la especie

en estudio, en este sentido se consideraron tasas de reproduccion iguales en ambos parches
ecolbgicos.

Se determinaron algebraicamente los equilibrios del sistema (4.1]), siendo posible estudiar
su estabilidad local. La establidad es la siguiente:

= punto de equilibrio (z,4)7 = (0,0)7 es inestable (punto silla), los valores propios son
reales y distintos.

e
~
D
wn
o
=
he)
o
=}
-t
@)
wn
2
&

» punto de equilibrio (z,y)
» punto de equilibrio (z,y)
» punto de equilibrio (z,y)
(z,y)

= punto de equilibrio (x,y



La simulacién del campo de direcciones del punto de equilibrio (z,y)” = (0,0)7 no se realiz6
puesto desde una perspectiva ecoldgica, este punto indica la ausencia de especies en ambos
parches ecoldgicos.

Las simulaciones de los campos de direcciones mediante Geogebra, InuesgraHQque lgs pun-
tos de equilibrio (z,y)T = (K,0)", (z,y)T = (m,0)", (z,y)T = (m — %, % — 23)T son
inestables localmente, la estabilidad local de estos tres puntos esta sujeta a las condiciones:

0<r<lif>1ir(l=2)>0; >05035 < R <1

Las simulacién del campo de direcciones mediante Geogebra, muestra que el punto de equili-
brio (z,y)” = (K, m)T es asintéticamente estable. Mediante simulaciones numéricas en mat-
plotlib.pyplot se comprobé para este punto considerando las condiciones 0 < r <1y K > 4m,
la estabilidad de la poblacién en el tiempo en ambos parches ecolégicos.

El modelo propuesto de 2 parches ecologicos se podria extender a un modelo de 3 parches
ecologicos incorporando una expresiéon matematica que represente a un depredador. O bien
que este nuevo parche ecologico incorpore una nueva funcién de migracién, que actue como
una reserva de la especie Huemul para el parche 2 con una tasa de reproduccion 7y distinta a 7.

La limitacién que presenta este modelo dice relacién principalmente con plantear una fun-
ciéon de migracién mas compleja desde el punto de vista de la cantidad de pardmetros, una
funcién de migracién de estas caracteristicas dificultaria determinar los puntos de equilibrio
del sistema de ecuaciones diferenciales.

La relevancia de esta investigacion radica en la ausencia de modelos que aborden de manera
integral el comportamiento de la especie Huemul frente al efecto Allee y su interaccién con
una funciéon de migracion. Este vacio en la literatura resalta la necesidad de llenar un espacio
crucial en la comprension de cémo estos factores influyen en el comportamiento migratorio de
los huemules, subrayando la importancia de este estudio.
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