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Resumen

El Huemul del sur, junto con el Huemul del norte y el Pudú, es uno de los tres
ciervos nativos de Chile. Debido a su escasez y su naturaleza esquiva, se ha conver-
tido en un emblema animal en nuestro páıs. Este ciervo es endémico de la región
andino-patagónica de Chile y Argentina. En la actualidad, se encuentra cataloga-
do como en peligro de extinción por la Unión Internacional para la Conservación
de la Naturaleza, siendo uno de los cérvidos neotropicales más amenazados. La
notable reducción de esta especie ha alcanzando niveles cŕıticos que lo sitúan por
debajo del umbral de Allee. El objetivo de este trabajo es analizar la dinámica de
un modelo matemático para la conservación de la especie Huemul que se encuentra
bajo efecto Allee y considera migración. Para estudiar éste fenomeno ecológico, se
emplea un sistema de ecuaciones diferenciales no lineal el cual modele la dinámica
poblacional, realizando un análisis cualitativo del mismo, determinando los puntos
de equilibrio, para luego proceder a realizar la linealización correspondiente. Esta
caracterización de los puntos de equilibrio nos permitirá analizar la estabilidad de
los mismos y, a su vez, construir el diagrama de fase correspondiente.

Abstract

The Southern Huemul, along with the Northern Huemul and the Pudú, is one of
the three native deer species in Chile. Due to its scarcity and elusive nature, it has
become an animal emblem in our country. This deer is endemic to the Andean-
Patagonian region of Chile and Argentina. Currently, it is classified as endangered
by the International Union for Conservation of Nature, being one of the most
threatened neotropical deer species. The significant reduction of this species has
reached critical levels, placing it below the Allee threshold. The objective of this
work is to analyze the dynamics of a mathematical model for the conservation
of the Huemul species, which is under the Allee effect and considers migration.
To study this ecological phenomenon, a system of nonlinear differential equations
is used to model the population dynamics, conducting a qualitative analysis of
it, determining the equilibrium points, and then proceeding with the correspon-
ding linearization. This characterization of the equilibrium points will allow us to
analyze their stability and, in turn, construct the corresponding phase diagram.
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Caṕıtulo 1

Introducción

La Ecoloǵıa Matemática es de vital importancia debido a su enfoque en el estudio de los
organismos vivos y su relación con el entorno. Este estudio abarca diversos niveles de organi-
zación de la materia viva, desde las moléculas y células hasta los ecosistemas y la biosfera en
su conjunto. A diferencia de otras ramas de la bioloǵıa, la ecoloǵıa requiere una perspectiva
multidisciplinaria que emplea herramientas provenientes de disciplinas como la F́ısica, Qúımi-
ca y Matemática. En particular, los trabajos de investigación en ecoloǵıa se distinguen por su
mayor utilización de herramientas matemáticas, como la estad́ıstica y los modelos matemáti-
cos. Estas herramientas permiten analizar y comprender los complejos sistemas ecológicos de
manera más precisa y rigurosa.

Aśı, la ecoloǵıa matemática desempeña un papel fundamental en el avance de nuestro
conocimiento sobre la interacción entre los organismos y su entorno. Al emplear herramientas
matemáticas, los investigadores pueden obtener resultados más cuantitativos y realizar pre-
dicciones más precisas, lo que contribuye a la toma de decisiones informadas en la gestión y
conservación de los ecosistemas.

Para establecer una relación entre ecoloǵıa y matemática en la aplicación de modelos
matemáticos, se abordan diversas temáticas, como el comportamiento y la dinámica de las
poblaciones, el estudio y análisis de las epidemias, entre otros casos relevantes. Para com-
prender estos comportamientos, se utilizan técnicas y software computacionales que permiten
resolver y modelar una población espećıfica. En este sentido, la disciplina encargada de com-
prender las fluctuaciones de una población de especies, ya sea en términos de crecimiento,
disminución e incluso extinción, se conoce como dinámica de poblaciones.

Los cambios en la dinámica de una especie pueden ser causados por diversas razones, tanto
endógenas (autodestrucción de la propia especie) como exógenas (como actividades humanas,
terremotos, aluviones, erupciones volcánicas, entre otros). Es fundamental destacar que las
bajas densidades de población en conjunto con condiciones ecológicas cŕıticas pueden conducir
a un crecimiento poblacional reducido, e incluso a la extinción de la especie.
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1.1. Antecedentes

1.1.1. Huemul

El Huemul del sur (Hippocamelus bisulcus) es uno de los tres ciervos nativos presentes en
Chile, junto con el huemul del norte o taruka (Hippocamelus antisensis) y el pudú (Pudu
puda). Debido a su escasa abundancia natural y su comportamiento esquivo, se ha conver-
tido, junto con el cóndor (Vultur gryphus), en un emblema animal. Es reconocido por los
pueblos originarios de la zona sur de Chile con distintos nombres. Por ejemplo, los Aonikenk o
Tehuelches, habitantes de la estepa patagónica, lo llamaban shoan, shoam, soonom, soonem,
shonam, shonen, sunam o trula. Mientras que los pehuenches de las regiones del Biob́ıo y de
la Araucańıa lo conoćıan como shenam, cisnal o cisnam [20].
Este ciervo es endémico de la región andino-patagónica de Chile y Argentina [22], en Su-
damérica. En la actualidad, se encuentra entre los cérvidos neotropicales más amenazados
y está catalogado como en peligro cŕıtico de extinción por la Unión Internacional para la
Conservación de la Naturaleza (UICN). Ha experimentado una marcada reducción tanto en
términos de número de individuos como en su distribución original [20].
El Huemul del sur posee una apariencia robusta, con extremidades fuertes y relativamente
cortas, lo que indica su adaptación a los entornos montañosos. Los machos son más grandes
y pesados que las hembras, oscilando entre los 55 y 90 kg, en comparación con los 60 a 80
kg de las hembras. Su pelaje, el cual se renueva dos veces al año en otoño y primavera, es
pardo, espeso, voluminoso (de 3 a 7 cm de longitud) y ligeramente oleoso, lo que le permite
nadar con facilidad en las fŕıas aguas de lagos, ŕıos y arroyos, además de proporcionarle un
excelente abrigo contra las bajas temperaturas y los fuertes vientos. Durante el invierno, el
pelaje se vuelve más largo y oscuro, y hacia la primavera empieza a cambiar a un pelo más
corto y claro. El tamaño de las cornamentas vaŕıa entre las diferentes poblaciones, siendo
más pequeñas en aquellas que habitan en áreas costeras, posiblemente debido a la limitada
disponibilidad de minerales y nutrientes en los valles glaciares [20].
Existen únicamente dos casos documentados de estimación de edad en vida silvestre, debido
al reducido número de animales marcados y monitoreados a lo largo del tiempo. El primero
de ellos se registró en el actual Parque Nacional Patagonia (anteriormente Reserva Nacional
Tamango), donde se marcó un huemul hace 10 años, estimando su edad en 4 años en el
momento de su captura. El segundo caso ocurrió en el Parque Nacional Torres del Paine,
donde se marcaron 16 cervatillos entre los años 2002 y 2008. De estos, se obtuvo información
de uno de los primeros individuos marcados, que sobrevivió hasta el año 2016, alcanzando los
13 años al finalizar el estudio [11].
Inicialmente, el Huemul del sur habitaba tanto territorio chileno como argentino, desde el ŕıo
Cachapoal (34º L. S., Región de O’Higgins) hasta el Estrecho de Magallanes (54º L. S.). Sin
embargo, en la actualidad ha experimentado una notable disminución, habiendo retrocedido
un 35 % de su territorio original y su población ha sufrido una disminución del 39 %. En Chile,
el Huemul se encuentra presente en las regiones del Biob́ıo, Ñuble, Los Ŕıos, Los Lagos, Aysén
y Magallanes, siendo estas últimas donde se concentra el mayor número de individuos y la
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Figura 1.1: Nicho ecológico ([20] )

superficie de hábitat que se encuentra en áreas silvestres protegidas (ASP).
En la actualidad, el Huemul del sur se encuentra en un peligro inminente de extinción debido
a diversos factores. Su reducido tamaño poblacional y la alta fragmentación de sus grupos
reproductivos son preocupantes, ya que estos se encuentran distanciados geográficamente entre
śı. Además, se encuentra aislado geográficamente a más de 400 km de la población más
numerosa y estable del sur de Argentina y Chile.
Las causas de este proceso de extinción están asociadas a diferentes factores. Históricamente,
la especie ha sido objeto de caza, lo que ha afectado su supervivencia en todo su rango de
distribución. Además, las enfermedades transmitidas por la ganadeŕıa extensiva han tenido
un impacto negativo en su salud. Por último, la reducción y destrucción del hábitat debido a
diversas actividades humanas también ha contribuido a su situación cŕıtica [20].
En la década de 1980, se estimaba que la población de huemules oscilaba entre 1.000 y 2.000
individuos. Sin embargo, en los años 90, se estimó un número mı́nimo de 781 individuos.
En el año 2006, se realizaron dos nuevas estimaciones poblacionales. Una de ellas recopiló
información más detallada y realizó un esfuerzo de muestreo desde 1992 hasta 2002, mientras
que la otra se centró únicamente en Argentina. Estas estimaciones se complementan y los
resultados indican la presencia de un total de 101 subpoblaciones en una superficie de 1.964.394
hectáreas en los Andes Patagónicos [24] . Aproximadamente el 52 % de esta distribución
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espacial se encuentra en Chile (con una población estimada entre 1.000 y 1.500 individuos) y
el 48 % en Argentina (con una población estimada entre 350 y 600 individuos).
En cuanto al tamaño poblacional, se estima que cerca de 2.000 individuos conforman la
población total. De este número, aproximadamente el 34.4 % se encuentra dentro de áreas
protegidas, que cubren el 47 % de la superficie de distribución en 31 unidades de protección,
como parques, monumentos o reservas, en ambos páıses. Por otro lado, el 74 % de la población
se encuentra en pequeños fragmentos de hábitat que vaŕıan entre 6.400 y 12.800 hectáreas.
Debido al reducido tamaño de la población actual, con menos de 2.000 individuos y una
drástica disminución del 99 % en relación a las abundancias históricas estimadas, aśı como las
tendencias negativas de la población y los riesgos derivados de una creciente fragmentación,
la especie ha sido clasificada como en peligro de extinción (EN) en la Lista Roja de la Unión
Internacional para la Conservación de la Naturaleza (IUCN).
En la región de Aysén, se ha observado que la población general de huemules se mantiene
estable en respuesta al aumento del ganado y la construcción de centrales hidroeléctricas a
gran escala en el paisaje, pero solo hasta cierto punto. Sin embargo, se ha identificado que las
poblaciones con menos de 100 individuos tienden a disminuir en estas circunstancias. Para
toda la región, se considera que existe potencial de recuperación de la población de huemules,
siempre y cuando se gestionen adecuadamente los factores limitantes. Es fundamental llevar
a cabo estudios exhaustivos para estimar el tamaño y la distribución de la población en su
totalidad, aśı como recopilar datos sobre la supervivencia de los individuos. Estos estudios
contribuirán a mejorar los planes de conservación para esta especie en peligro de extinción
[20].
Se resalta la importancia de adoptar estrategias de gestión que promuevan y preserven la
variabilidad genética, a la vez que limiten la endogamia futura. Para lograrlo, es fundamental
conservar y establecer corredores de hábitat que faciliten el flujo genético, aśı como expandir
las áreas protegidas con el fin de aumentar el tamaño efectivo de la población. Estas medidas
contribuirán a mantener la diversidad genética y a salvaguardar el futuro de la especie [20].
Las poblaciones de Huemul se caracterizan por presentar una baja densidad. Se han llevado
a cabo estimaciones de densidad poblacional utilizando diferentes métodos, como transectas
y cámaras trampa, y se ha observado que las densidades vaŕıan en un rango de 0,35 a 6,9
huemules por kilómetro cuadrado.

1.1.2. Efecto Allee

El ecologista Warder Clyde Allee (1885-1955) hacia el año 1920 estudió las especies desde
una perspectiva ecológica desarrollando su investigación hacia el comportamiento grupal de
animales. Dicha investigación fue presentada en [2].
El fenómeno conocido como efecto Allee, nombrado en honor a W.C. Allee, se manifiesta
en poblaciones locales de especies cuando, en determinadas condiciones naturales, la tasa de
crecimiento per cápita disminuye a niveles cŕıticos. Si esta situación persiste a lo largo del
tiempo, existe un alto riesgo de extinción para la especie.
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Un desaf́ıo recurrente en la conservación de especies en peligro de extinción es que la simple
prohibición de la caza no garantiza la recuperación de la población. Esto se debe a que, cuando
la densidad poblacional alcanza niveles cŕıticos, la reproducción y el mantenimiento se vuelven
extremadamente dif́ıciles, lo que provoca una disminución en la tasa de reproducción hasta
niveles negativos y, en última instancia, conduce a la extinción de la especie [19].
P. A. Stephens et al. [23], definen el efecto Allee como “una relación positiva entre un compo-
nente de la adaptación (fitness) individual y el número o densidad de conespećıficos” (dos o
más individuos, poblaciones son conespećıficos si pertenecen a la misma especie ). Lo anterior
se puede interpretar como: la adaptación de un individuo en una población pequeña decrece
a medida que el tamaño de la población también disminuye [1].
La adaptación individual, en su sentido más amplio, se refiere a la contribución genética
que un individuo realiza a las generaciones futuras. Los componentes fundamentales de la
adaptación son la supervivencia y la reproducción, de los cuales se derivan otros aspectos como
el desarrollo, la edad de la primera reproducción, el éxito en el apareamiento, la fecundidad
y las probabilidades de muerte o reproducción, entre otros [1].
En general, las poblaciones pueden experimentar un fenómeno conocido como efecto Allee, el
cual puede originarse a través de diversos mecanismos biológicos. En el caso de un componen-
te de efecto Allee, puede surgir debido a cualquier mecanismo que genere una dependencia
positiva de la densidad en algún aspecto adaptativo. El efecto Allee se puede clasificar en 2
grupos:

1. Efecto Allee demográfico, se refiere a una relación positiva entre la tasa de crecimiento
per cápita de una población y su tamaño o densidad. Desde el punto de vista ecológico
podemos subdivir este efecto en:

a) Efecto Allee débil es aquel en que la tasa de crecimiento de la población per cápita
es positiva para densidades de población pequeñas, donde un incremento en esta
densidad produce un incremento en la tasa; y para densidades altas un incremento
en la densidad produce un decrecimiento en dicha tasa.

b) El efecto Allee fuerte se refiere a una situación en la cual, si la densidad poblacional
cae por debajo de un valor cŕıtico conocido como umbral de Allee, la tasa de
crecimiento per cápita se vuelve negativa. En presencia de un efecto Allee fuerte,
una población experimentará un rápido declive hasta su extinción.[1].

2. Efecto Allee componente, relacionado con la adaptación individual de una especie, se
refiere a la relación entre la fecundidad o la supervivencia de una especie y la densidad
poblacional. Este tipo de efecto no siempre genera un Allee demográfico.

Uno de los principales mecanismos propuestos para explicar una mayor supervivencia en
grupos con altas densidades es la protección proporcionada por las agregaciones de animales
frente a amenazas externas [1].
Se han descrito numerosos ejemplos del efecto Allee en relación con bajas densidades pobla-
cionales. Sin embargo, este efecto también puede influir en un amplio rango de densidades.
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Las poblaciones pueden manifestar el efecto Allee debido a diversos fenómenos [3] , [7], entre
los cuales se incluyen :

1. En poblaciones con baja densidad o tamaño, puede resultar más dif́ıcil encontrar parejas
compatibles y receptivas.

2. La reproducción puede facilitarse cuando los individuos tienen la percepción de otros con
los que reproducirse. En poblaciones pequeñas, existe una menor probabilidad de que
esta situación ocurra, ya que los individuos tienen menos oportunidades de encontrar
compañeros reproductivos.

3. En poblaciones pequeñas, los grupos de presas pueden mostrar un comportamiento
antidepredador cooperativo menos eficiente o menos vigilante.

4. A bajas densidades de población, el agrupamiento colectivo se vuelve menos eficaz, lo
que afecta la termorregulación social y la resistencia a bajas temperaturas, disminuyendo
su eficiencia.

5. En poblaciones pequeñas, se observa un incremento en la endogamia, es decir, en la tasa
de autofecundación y/o el número de apareamientos entre individuos emparentados
cercanos.

El efecto Allee queda representado en la figura (1.2) :

Figura 1.2: Derivada (dx/dt) v/s Densidad de la población (x), la gráfica queda representada
por la ecuación dx

dt = rx
(
1 − x

K

) (
x
m − 1

)
, siendo m el umbral Allee y K la capacidad de carga.
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1.1.3. Migración

La naturaleza sigue una dinámica sencilla en su funcionamiento, aunque puede resultar dif́ıcil
de comprender para los seres humanos. Es simple porque establece un equilibrio dinámico en
el que cada componente cumple su función y forma un sistema orgánico perfecto que permite
el desarrollo de la vida en todas sus manifestaciones. Dentro de este macrosistema, todas las
partes están interrelacionadas, y si algún elemento desaparece, la naturaleza se encarga de
reemplazarlo.
A través de disciplinas como la genética y la ecoloǵıa, entre otras, hemos ido adquiriendo un
mayor entendimiento de los diferentes mecanismos y relaciones que existen entre los seres vivos
y su entorno, para mantener un orden que garantice la supervivencia de todas las especies. La
depredación, la competencia, el mutualismo y el parasitismo son ejemplos de estas relaciones,
que contribuyen al equilibrio de los ecosistemas y crean un espacio vital para cada especie.
Todos los grupos tienen la necesidad de encontrar un lugar para habitar, reproducirse y
alimentarse. Algunos son capaces de generar su propio alimento, mientras que otros dependen
de fuentes externas [15].
Esta capacidad de obtener alimento y encontrar un lugar adecuado probablemente sea el se-
creto del éxito para la supervivencia. Cada especie se adapta a caracteŕısticas f́ısicas, qúımicas
y biológicas espećıficas, y está limitada por ellas. Algunos grupos han logrado encontrar re-
giones que les proporcionan alimento durante todo el año, tanto para ellos como para sus
cŕıas. Sin embargo, otros no han encontrado tales beneficios y necesitan desplazarse a otros
lugares. Si este desplazamiento es unidireccional, se llama emigración, mientras que si es de
ida y vuelta, se conoce como migración [16]
La migración y la emigración son componentes importantes del proceso de dispersión, que
desempeña un papel crucial en la regulación del tamaño de las poblaciones. Estos fenóme-
nos contribuyen a garantizar la supervivencia de las especies más adaptadas, mientras que
los individuos más débiles tienden a ser desplazados o se convierten en presa fácil para los
depredadores. Por lo tanto, aquellos individuos que exceden esta capacidad se ven en la nece-
sidad de buscar alternativas o enfrentar la posibilidad de sufrir consecuencias negativas, como
la escasez de alimentos y el aumento de la competencia por el espacio vital. La superviven-
cia de una especie depende de su capacidad para adaptarse a estas limitaciones y encontrar
soluciones viables para su subsistencia [10].
La emigración puede ocurrir debido a tres causas fundamentales: la competencia intra e in-
terespećıfica y la destrucción o transformación de hábitats. En el primer caso, los individuos
o poblaciones que no logran asegurarse un territorio adecuado para su sustento tienden a
emigrar. Además, puede darse la emigración de poblaciones enteras que son desplazadas por
nuevos competidores, a menudo introducidos por actividades humanas, que tienen una mejor
adaptación al nuevo entorno. Por otro lado, la destrucción y reducción del hábitat de diferen-
tes especies, también causada por el ser humano, puede ser otra razón para la emigración. En
su lucha por la supervivencia, las especies buscarán nuevos territorios, lo que a su vez puede
desencadenar un efecto dominó, obligando a otras especies a desplazarse.[15].
En el proceso emigratorio, ciertas poblaciones de una especie se ven obligadas a desplazar-
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se hacia diferentes lugares en busca de condiciones favorables para su supervivencia. Si las
condiciones en el nuevo entorno son lo suficientemente distintas como para requerir adapta-
ciones y se produce una separación espacial y temporal de los demás individuos de la misma
especie, puede originarse una nueva especie. La dispersión desempeña un papel crucial en la
consolidación y madurez de los ecosistemas, al permitir que todos los nichos ecológicos sean
ocupados y se establezca un equilibrio dinámico de interrelaciones entre todas las formas de
vida [15].
Una tercera causa del fenómeno migratorio se origina principalmente por la búsqueda de
áreas propicias para el apareamiento y la reproducción, donde exista suficiente alimento para
mantener tanto a la población actual como a los nuevos individuos del grupo. Este proceso se
activa en respuesta a cambios en las condiciones f́ısicas, qúımicas y biológicas del entorno, aśı
como a cambios en la fisioloǵıa del animal, que a menudo son consecuencia de dichos cambios
externos.
En resumen, la migración se debe a la necesidad de encontrar lugares adecuados para repro-
ducirse, obtener suficiente alimento y asegurar condiciones favorables para el desarrollo de los
nuevos individuos [15].
Una vez que la población se encuentra en movimiento, su búsqueda llegará a su fin cuando
encuentren uno o varios lugares que les proporcionen las condiciones necesarias para garantizar
su supervivencia.
Un modelo de flujo migratorio comúnmente se utiliza para analizar el crecimiento o la dis-
minución de la población en distintas áreas geográficas estudiadas. Dependiendo del tipo de
agentes o individuos migrantes involucrados, se pueden establecer las siguientes categoŕıas:
Migración humana, Migración de especies animales, Propagación de enfermedades y Migración
de otros organismos [18].

1.1.4. Modelos de población

Desde los inicios de la ecoloǵıa como disciplina cient́ıfica, e incluso antes, los modelos ma-
temáticos han sido parte fundamental de sus fundamentos. Estos modelos han permitido
comprender y estudiar diversos procesos ecológicos.
Algunos ejemplos destacados incluyen los modelos de crecimiento poblacional propuestos por
Malthus en 1798 y Verhulst en 1838, 1845 y 1847, los modelos de competencia y depredación
desarrollados por Lotka en 1925 y Volterra en 1926, los trabajos de Gause en 1934 que
combinaron la experimentación y los modelos matemáticos en el estudio de la competencia.
Los estudios realizados por Robert MacArthur entre 1950 y 1975 y los trabajos de Hutchinson,
especialmente a partir de 1957, que contribuyeron al desarrollo de la moderna teoŕıa del nicho
ecológico. Estos ejemplos demuestran cómo los modelos matemáticos han sido una herramienta
valiosa en la ecoloǵıa para comprender los patrones y procesos que ocurren en los ecosistemas
[17].
Los modelos matemáticos desempeñan un papel de gran importancia en ecoloǵıa, especial-
mente en la representación de las variaciones de densidad de las poblaciones. Estos modelos
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tienen como objetivo expresar, a través de ecuaciones, cómo la densidad poblacional cambia
a lo largo del tiempo.
Estas herramientas proporcionan una valiosa ayuda para comprender y predecir los cambios
en la densidad poblacional y su impacto en los ecosistemas. Gracias a ellos, podemos obtener
una visión más clara de la dinámica de las poblaciones y tomar decisiones informadas en la
gestión y conservación de los recursos naturales [17].Un ejemplo de ello es el modelo clásico
de crecimiento exponencial o modelo de Malthus, el cual es el más básico entre los modelos
continuos de crecimiento poblacional. Este modelo establece que la tasa de crecimiento de la
población es proporcional a su densidad, y está dado por:

dx

dt
= rx

x(0) = x0

dónde:

x : población
b : tasa de natalidad per cápita
d : tasa de mortalidad per cápita
r : tasa de crecimiento per cápita
r = b − d

Un modelo más realista considera que la población no puede crecer indefinidamente y de forma
cada vez más rápida, como lo representa el modelo exponencial. En realidad, existe un ĺımite
al crecimiento poblacional y, al desarrollar un modelo matemático, este ĺımite debe reflejarse
en una función que dependa de la densidad poblacional. La tasa de crecimiento ya no será
constante, sino que variará en función de la densidad poblacional, este es el caso del modelo
loǵıstico de crecimiento o modelo de Verhulst en el cual, la tasa de crecimiento se contempla
como una función lineal decreciente de la densidad poblacional. El modelo de crecimiento
(logistico) poblacional de Verhulst queda representado por:

dx

dt
= rx

(
1 − x

K

)

x(0) = x0

dónde:

x : población
K : capacidad de carga ambiental
r : tasa de crecimiento per cápita

Un modelo matemático de crecimiento poblacional debe cumplir con ciertas restricciones inhe-
rentes al fenómeno biológico que representa. Por ejemplo, si la población es nula, el crecimiento
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debe ser nulo también. Además, es necesario evitar la aparición de poblaciones negativas, que
pueden tener sentido desde el punto de vista de la ecuación, pero no en el mundo real. Es-
ta última restricción se puede solucionar mediante la aplicación de condiciones de contorno
adecuadas o la elección de funciones apropiadas.

1.1.5. Planteamiento del Problema

En escenarios donde la densidad poblacional se encuentra en niveles cŕıticamente bajos y
pone en peligro la supervivencia de una especie, se hace necesario intervenir para fomentar la
recuperación de los niveles de población y asegurar su supervivencia. Una estrategia razonable
en estas situaciones es la introducción de nuevos individuos en el hábitat de la especie. En
este contexto, una estrategia natural consiste en generar un flujo migratorio que dependa del
nivel poblacional de la especie.
Como vimos anteriormente, el Huemul es una especie que encuentra en peligro de extinción
que habita en la región andino patagónica de Chile y Argentina, los niveles de población han
bajado notablemente durante los últimos años. En este sentido, la investigación se enfocará en
el estudio matemático de cómo los nuevos individuos se integran en el hábitat de una especie
mediante el flujo migratorio, el cual está influenciado por el tamaño de la población de la
especie.
En la literatura actual, no se han encontrado modelos que integren ecuaciones diferenciales
con el efecto Allee y la migración para la especie Huemul. Dado que esta especie se encuentra
en peligro de extinción, es de vital importancia contar con herramientas que permitan simu-
lar diferentes escenarios y evaluar el impacto y la respuesta de la especie frente a diversas
perturbaciones. En este contexto, surge la pregunta sobre la posibilidad de desarrollar un
modelo que se enfoque en la dinámica poblacional del Huemul considerando el efecto Allee,
migración y parches, lo que permitiŕıa obtener una comprensión más completa de su dinámica
y su interacción con el medio ambiente.

1.2. Objetivos

Objetivo General

Analizar la dinámica de un modelo matemático para la conservación de la especie Huemul
que se encuentra bajo efecto Allee y considera migración.

Objetivos Espećıficos

1. Establecer un modelo poblacional para el Huemul que considere dos parches, efecto Allee
y una función de inmigración.

2. Analizar las propiedades cualitativas del modelo matemático planteado.

3. Evaluar mediante simulaciones matemáticas el modelo propuesto.
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Caṕıtulo 2

Marco teórico

En esta sección se presentarán antecedentes matemáticos relacionados con la teoŕıa de ecua-
ciones diferenciales ordinarias. Los tópicos a tratar son la existencia soluciones de ecuaciones
diferenciales, los sistemas lineales, el polinomio caracteŕıstico, los sistemas no lineales y el
principio de estabilidad linealizada. Este marco teórico se sustenta en [13], [5] y [4].

2.1. Existencia de soluciones de ecuaciones diferenciales ordi-
narias y Estabilidad.

La terminoloǵıa, resultados y demostraciones realizadas en esta sección se basan en las refe-
rencias [13] y [5].

Definición 2.1. Sea t un escalar real, sea D un conjunto abierto en Rn+1 con un elemento
de D escrito como (t, x), sea f : D → Rn continua y sea ẋ = dx/dt, la ecuación diferencial:

ẋ = f(t, x(t)) o, brevemente ẋ = f(t, x). (2.1)

Decimos que x es una solución de (2.1) en un intervalo I ⊂ R si x es continuamente diferen-
ciable definida en I, (t, x(t)) ∈ D, t ∈ I y x satisface (2.1) en I. Nos referimos a f como un
campo vectorial en D.

Teorema 2.1 (Fundamental de Existencia). Si f es continua en D, entonces para cualquier
(t0, x0) ∈ D, hay al menos una solución de (2.1) que pasa por el punto (t0, x0).

Definición 2.2. Si ϕ es una solución de una ecuación diferencial en un intervalo I, se dice
que ϕ̂ es una continuación de ϕ si ϕ̂ se define en un intervalo Î que contiene un intervalo
I, ϕ̂ coincide con ϕ en I y ϕ̂ satisface la ecuación diferencial en Î. Una solución ϕ no es
continuable si no existe tal continuación, es decir, el intervalo I es el intervalo maximal de
existencia de la solución ϕ.
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Teorema 2.2. Si D es un conjunto abierto en Rn+1, f : D → Rn es continua y ϕ(t) es
una solución de (2.1) en algún intervalo, entonces hay una continuación de ϕ a un intervalo
máximo de existencia. Además, si (a, b) es un intervalo máximo de existencia de una solución
x de (2.1), entonces (t, x(t)) tiende a la frontera de D cuando t → a y t → b.

Definición 2.3. Una función f(t, x) definida en un dominio D en Rn+1 se dice que es
localmente lipschitziana en x, si para cualquier conjunto acotado cerrado U en D hay un
k = kU tal que |f(t, x) − f(t, y)| ≤ k|x − y| para (t, x), (t, y) en U . Si f(t, x) es continua
y tiene primeras derivadas parciales con respecto a x en D, entonces f(t, x) es localmente
lipschitziana en x.

Definición 2.4. Si f(t, x) es continua en un dominio D, entonces el teorema fundamental de
existencia implica la existencia de al menos una solución de (2.1) que pasa por un punto dado
(t0, x0) en D. Supongamos, además que solo hay una solución x(t, t0, x0) a través del punto
(t0, x0) dado en D. Para cualquier (t0, x0) ∈ D, sea (a(t0, x0), b(t0, x0)) el intervalo maximal
de existencia de x(t, t0, x0) y sea E ⊂ Rn+2 definido por

E = {(t, t0, x0) : a(t0, x0) < t < b(t0, x0), (t0, x0) ∈ D}.

La trayectoria a través de (t0, x0) es el conjunto de puntos en Rn+1 dado por (t, x(t, t0, x0))
para t variando sobre todos los valores posibles para los cuales (t, t0, x0) pertenece a E. El
conjunto E se denomina dominio de definición de x(t, t0, x0).

Teorema 2.3. Si f(t, x) es continua en D y localmente lipschitziana con respecto a x en D,
entonces para cualquier (t0, x0) en D, existe una única solución x(t, t0, x0), x(t0, t0, x0) = x0,
de (2.1) pasando por (t0, x0). Además, el dominio E en Rn+2 de definición de la función
x(t, t0, x0) es abierto y x(t, t0, x0) es continua en E.

Definición 2.5. Sea el sistema que involucra dos ecuaciones diferenciales de la forma
dx

dt
= F (x, y)

dy

dt
= G(x, y).

(2.2)

Donde las funciones F y G son continuas y tienen derivadas parciales continuas an algún
dominio D del plano xy. El sistema (2.2) no contiene de manera expĺıcita a la variable inde-
pendiente t. Se dice que un sistema con esta propiedad es autónomo. El sistema

ẋ = Ax,

en donde A es una matriz constante de 2 × 2, es el ejemplo más sencillo de un sistema
autónomo bidimensional.
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Definición 2.6. Los puntos, si los hay, en donde f(x) = 0 se denominan puntos de equilibrio
del sistema autónomo ẋ = f(x). En esos puntos, también ẋ = 0, por lo que los puntos de
equilibrio corresponden a soluciones constantes, o de equilibrio, del sistema de ecuaciones
diferenciales. Se dice que un punto de equilibrio x∗ del sistema ẋ = f(x) es estable si, dado
cualquier ϵ > 0, existe un δ > 0 tal que la solución x = ϕ(t) del sistema (2.2), que en t = 0
satisface ||ϕ(0) − x∗|| < δ, existe y satisface

||ϕ(0) − x∗|| < ϵ,

para todo t ≥ 0. Estas proposiciones matemáticas afirman que todas las soluciones que se
inician lo suficientemente cerca (es decir, a menos de la distancia δ) de x∗ permanecen cerca
(a menos de la distancia ϵ) de x∗. Se dice que un punto de equilibrio es inestable si es no
estable.

Definición 2.7. Se dice que un punto de equilibrio x∗ es asintóticamente estable si es
estable y existe un δ0, con 0 < δ0 < δ, tal que si una solución ϕ(t) satisface ||ϕ(0) − x∗|| < δ0,
entonces

ĺım
t→∞

ϕ(t) = x∗.

2.2. Sistemas lineales.

La terminoloǵıa, resultados y demostraciones realizadas en esta sección se basan en la refe-
rencia [4].

2.2.1. Sistemas lineales.

Consideremos un sistema de ecuaciones diferenciales de la forma:


dx

dt
= ax + by

dy

dt
= cx + dy,

(2.3)

donde a, b, c, d son constantes (que pueden ser cero). Se dice que éste es un sistema lineal con
coeficientes constantes. Las constantes a, b, c, d son los coefientes. La linealidad, se refiere al
hecho de que las ecuaciones para dx/dt y para dy/dt contiénen solo primeras potencias de las
variables dependientes. Es decir, son funciones lineales de x y y. Como los coeficientes a, b, c, d
son constantes este tipo de sistemas del tipo (2.3) son también autónomos y por lo tanto,
las curvas soluciones localizadas en el plano de fase no se tocan. Esos sistemas tienen dos
variables de estado, por lo cual decimos que son planos o bidimensionales. Podemos emplear
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una notación vectorial y matricial para escribir este sistema en forma más eficiente. Sea A
una matriz cuadrada de orden 2 × 2 y sea Y el vector columna de variables dependientes,

A =
[
a b
c d

]
, Y =

[
x
y

]
. (2.4)

Entonces el producto de una matriz A de orden 2 × 2 y un vector columna Y es el vector
columna AY dado por:

AY =
[
a b
c d

] [
x
y

]
=
[
ax + by
cx + dy

]
.

La matriz A de los coeficientes del sistema se llama matriz de coeficientes. Si x y y son
variables dependientes, decimos entonces

Y (t) =
[
x(t)
y(t)

]
,

dY

dt
=


dx

dt

dy

dt

 .

La notación vectorial puede extenderse para incluir sistemas con cualquier número n de va-
riables de estado y1, y2, . . . , yn. El sistema lineal autónomo con n variables dependientes es

dy1
dt

= a11y1 + a12y2 + . . . + a1nyn,

dy2
dt

= a21y1 + a22y2 + . . . + a2nyn,

...
...

...
dyn

dt
= an1y1 + an2y2 + . . . + annyn.

En este caso, los coeficientes de este sistema son a11, a12, . . . , ann. Considerando Y, dY
dt y la

matriz A de orden n × n, respectivamente como,

Y =


y1
y2
...

yn

 ,
dy

dt
=


dy1
dt

dy2
dt...

dyn

dt

 , A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
an1 an2 . . . ann

 ,

tenemos

dY

dt
= AY =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
an1 an2 . . . ann




y1
y2
...

yn

 =


a11y1 + a12y2 + . . . + a1nyn

a21y1 + a22y2 + . . . + a2nyn
...

an1y1 + an2y2 + . . . + annyn

 . (2.5)

El número de variables dependientes se denomina la dimensión del sistema, por lo que éste es
n-dimensional.
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2.2.2. Puntos de equilibrio de sistemas lineales.

En este apartado se hará mención a los puntos de equilibrio de un sistema lineal dY
dt = AY .

Si bien la dimensión de la ecuación (2.5) es de orden n, en nuestro caso estudiaremos un
sistema lineal de dimensión 2. Comenzamos buscando las soluciones más simples, es decir, las
soluciones de equilibrio. Un punto Y0 = (x0, y0)T es un punto de equilibrio de un sistema si
y sólo si el campo vectorial en Y0 es el vector cero. El campo vectorial de un sistema lineal,
está dado por

F (Y0) = AY0,

es decir, el vector en Y0 se determina tomando el producto de la matriz A y el vector Y0. En
consecuencia, los puntos de equilibrio son los puntos Y0 tales que

AY0 =
[
0
0

]
.

Luego, [
a b
c d

] [
x0
y0

]
=
[
ax0 + by0
cx0 + dy0

]
=
[
0
0

]
.

Escrita de manera escalar, la ecuación vectorial es un par de ecuaciones lineales:{
ax0 + by0 = 0
cx0 + dy0 = 0.

Siendo (x0, y0)T = (0, 0)T una solución de esas ecuaciones. Por lo tanto, Y0 = (0, 0)T es un
punto de equilibrio y la función constante Y (t) = (0, 0)T , ∀t es una solución del sistema lineal,
llamada solución trivial del sistema. Cualesquier punto de equilibrio (x0, y0)T deben también
satisfacer {

ax0 + by0 = 0
cx0 + dy0 = 0.

Para hallarlos, suponer que a ̸= 0, empleando la primera ecuación, resulta:

x0 = − b

a
y0.

Luego, la segunda ecuación resulta c
(
− b

a

)
y0 + dy0 = 0, que puede escribirse como

(ad − bc)y0 = 0.

Entonces, y0 = 0 o ad − bc = 0. Si y0 = 0, se sigue que x0 = 0 . Un sistema lineal tiene puntos
de equilibrio no triviales sólo si ad − bc = 0.
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2.2.3. Valores y vectores propios.

En esta subsección mostraremos los teoremas y definiciones que se requieren para definir los
conceptos de valores propios y vectores propios.

Teorema 2.4. Si A es una matriz con det A ̸= 0, entonces el único punto de equilibrio para
el sistema lineal dY/dt = AY es el origen.

Definición 2.8. Supongamos que dY/dt = AY es un sistema lineal de ecuaciones diferen-
ciales.

1) Si Y (t) es una solución de este sistema y k es cualquier constante, entonces kY (t) es
también una solución-

2) Si Y1(t) y Y2(t) son dos soluciones de este sistema, entonces Y1(t) + Y2(t) es también
una solución.

Mediante el principio de linealidad, se puede construir un número infinito de nuevas soluciones
a partir de cualquier solución o par de soluciones dadas. La forma k1Y1(t) + k2Y2(t) se llama
una combinación lineal de las soluciones Y1(t) y Y2(t). Con dos soluciones, podemos producir
un número infinito de resultados formando combinaciones lineales de ellas dos.

Teorema 2.5. Supongamos que (x1, y1)T y (x2, y2)T son dos vectores columnas linealmente
independientes en el plano. Entonces, dado cualquier vector (x0, y0)T existen k1 y k2 tales
que:

k1

[
x1
y1

]
+ k2

[
x2
y2

]
=
[
x0
y0

]
.

La ecuación anterior representa un sistema de dos ecuaciones lineales{
x1k1 + x2k2 = x0
y1k1 + y2k2 = y0.

Teorema 2.6. Supongamos que Y1(t) y Y2(t) son soluciones del sistema lineal dY/dt = AY .
Si Y1(0) y Y2(0) son linealmente independientes, entonces para cualquier condición inicial
Y (0) = (x0, y0)T podemos encontrar constantes k1 y k2 tales que k1Y1(t) + k2Y2(t) es la
solución del problema de valor inicial

dY

dt
= AY, Y (0) =

[
x0
y0

]
.

Definición 2.9. Dada una matriz A, un número λ se llama valor propio de A si existe un
vector no nulo V = (x, y)T , para el cual

AV = A

[
x
y

]
= λ

[
x
y

]
= λV.

El vector V se llama vector propio correspondiente al valor propio λ. Un vector propio es aquel
en que el campo vectorial apunta en la misma dirección o en la opuesta al vector mismo.
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Definición 2.10. Dada una matriz A, si V es un vector propio del valor propio λ, entonces
cualquier múltiplo escalar kV también es un vector propio para λ, es decir:

A(kV ) = kAV = k(λV ) = λ(kV ).

Determinación de los valores propios.

Para hallar las soluciones caracteŕısticas de sistemas lineales, debemos calcular los valores
y vectores propios de la respectiva matriz de coeficientes. Es decir, hay que encontrar los
vectores V = (x, y)T tales que

AV = A

[
x
y

]
= λ

[
x
y

]
= λV, con A =

[
a b
c d

]
, (2.6)

se tiene [
a b
c d

] [
x
y

]
= λ

[
x
y

]
,

igualdad que podemos expresar como el sistema:{
ax + by = λx
cx + dy = λy.

Este sistema tiene soluciones no triviales si y sólo si

det
[
a − λ b

c d − λ

]
= 0.

Nuestra condición de determinante para una solución no trivial de la ecuación AV = λV
puede plantearse asumiendo que det(A − λI) = 0.

Definición 2.11. Para hallar los valores propios de la matriz A dada en (2.6), debemos
determinar los valores de λ para los que

det(A − λI) = 0.

Luego el determinante resulta:

det
[
a − λ b

c d − λ

]
= (a − λ)(d − λ) − bc = λ2 − (a + d)λ + (ad − bc) = 0. (2.7)

El polinomio obtenido se denomina polinomio caracteŕıstico del sistema. Sus ráıces son los
valores propios de la matriz A.
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Teorema 2.7. Supongamos que la matriz A dada en (2.6) tiene un valor propio real λ con
vector propio asociado V . Entonces el sistema lineal dY/dt = AY tiene la solución carac-
teŕıstica

Y (t) = eλtV.

Si λ1 y λ2 son valores propios reales y distintos, cuyos vectores propios respectivos son V1 y
V2, entonces las soluciones Y1(t) = eλ1tV1 y Y2(t) = eλ2tV2 son linealmente independientes y
Y (t) = eλ1tV1 + eλ2tV2, es la solución general del sistema.

2.2.4. Puntos de equilibrio estables e inestables, clasificación

Analizaremos el comportamiento de un sistema lineal de orden 2 × 2 con dos valores propios
distintos, no nulos y reales λ1 y λ2.

Teorema 2.8. Sea Y (t) una solución real de un sistema lineal con matriz de coeficientes A
de orden 2 × 2 tal que dY

dT = AY .

a) Si λ1 < 0 < λ2, entonces el origen es un punto silla. Hay dos ĺıneas en el diagrama
de fase que corresponden a la solución caracteŕıstica. Las soluciones tienden a (0, 0)
cuando t se incrementa, y las que se encuentran sobre la otra ĺınea se alejan de (0, 0).

b) Si λ1 < λ2 < 0, entonces el origen es un punto de equlibrio atractor. Todas las soluciones
tienden a (0, 0) cuando t → ∞ y la mayoŕıa de ellas tienden a (0, 0) en la dirección del
vector propio λ2.

c) Si 0 < λ2 < λ1, entonces el origen es un punto de equilibrio repulsor. Todas las solu-
ciones se alejan de (0, 0) cuando t → ∞ y una gran parte de ellas lo hacen siguiendo la
dirección del vector propio λ2.

Teorema 2.9. Asumiendo que dY
dt = AY es un sistema lineal con valores propios complejos

λ1 = α + iβ y λ2 = α − iβ, β ̸= 0. Entonces la solución compleja general del sistema tiene la
forma

Y (t) = eαt(cos βt + i sin βt)Y0,

donde Y (0) es un vector propio complejo de la matriz A.

Teorema 2.10. Sea un sistema lineal dY
dt = AY que tiene valores propios complejos dados

por λ1 = α + iβ y λ2 = α − iβ, con β ̸= 0, entonces,

a) Si α < 0, las soluciones se mueven en espiral hacia el origen, el cual se denomina un
punto de equilibrio atractor espiral.

b) Si α > 0, las soluciones se mueven en espiral alejándose del origen, el cual se denomina
un punto de equilibrio repulsor espiral.

c) Si α = 0, las soluciones son periódicas. Aqúı el origen se llama un centro.
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Teorema 2.11. Sea un sistema lineal dY
dT = AY donde A es la matriz de coeficientes de orden

2 × 2,cuyos valores propios son iguales, es decir, λ = λ1 = λ2, entonces la solución general
del sistema está dada por,

Y (t) = k1eλtV1 + k2eλt(tV1 + V2) = eλt(k1V1 + k2V2) + teλtk2V1.

Además se tiene que,

a) Si λ < 0, entonces el punto de equilibrio en el origen es un atractor.

b) Si λ > 0, entonces el punto de equilibrio en el origen es un repulsor.

Teorema 2.12. Sea un sistema lineal dY
dt = AY , tal que la matriz A tiene valores propios

λ1 = 0 y λ2 ̸= 0. Supongamos que V1 es un vector propio para λ1 y V2 es un vector propio
de λ2. En este caso tenemos dos valores propios reales y distintos y la solución general del
sistema es

Y (t) = k1V1 + k2eλ2tV2.

a) Si λ1 < 0 entonces el segundo término en la solución general tiende a cero cuando t
crece, por lo que la solución Y (t) = k1V1 + k2eλ2tV2, tiende al punto de equilibrio k1V1
a lo largo de una ĺınea paralela a V2.

b) Si λ1 > 0, entonces la solución de arriba se aleja de la ĺınea de puntos de equilibrio
cuando t crece.

2.2.5. Traza y determinante.

Supongamos que comenzamos con el sistema lineal dY/dt = AY , donde A es la matriz[
a b
c d

]
.

El polinomio caracteŕıstico para A es det(A − λI) = λ2 − (a + d)λ + ad − bc. La cantidad a + d
se llama traza de la matriz A y como sabemos, la cantidad ad− bc es el determinante de A. El
polinomio caracteŕıstico de A entonces puede abreviarse como λ2 − Tλ + D, donde T = a + d
es la traza de A y D = ad − bc es el determinante de A. Como el polinomio caracteŕıstico de
A depende sólo de T y D, se infiere que los valores propios de A también están subordinados
a esos valores.
Si resolvemos la ecuación caracteŕıstica λ2 − Tλ + D = 0, obtenemos los valores propios

λ = T ±
√

T 2 − 4D

2 .

Al examinar el discriminante, los valores propios son complejos conjugados si T 2 − 4D < 0,
son repetidos si T 2 − 4D = 0, y son reales y distintos si T 2 − 4D > 0.
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Por otro lado, si observamos la figura 2.1, tenemos que el eje T corresponde a la ĺınea horizontal
y el eje D a la ĺınea vertical. Entonces la curva T 2 − 4D = 0 , o bien D = T 2

4 es una parábola
concava hacia arriba en este plano. La llamamos la parábola de ráız repetida. Arriba de ésta
encontramos T 2 − 4D < 0 y abajo de ella T 2 − 4D > 0.

Figura 2.1: Plano D v/s T , la región sombreada corresponde a T 2 − 4D > 0

Si T 2 − 4D < 0, el punto (T, D) se encuentra arriba de la parábola de ráız repetida, entonces
sabemos que los valores propios son complejos y que su parte real es T/2. Tenemos un atractor
espiral si T < 0, un repulsor si T > 0 y un centro si T = 0. En el plano traza-determinante
el punto (T, D) está localizado arriba de la parábola de ráız repetida. Si (T, D) está a la
izquierda del eje D, el sistema correspondiente tiene un atractor espiral, y si se encuentra a
la derecha del eje D, el sistema tiene un repulsor espiral. Si (T, D) se encuentra sobre el eje
D, entonces el sistema tiene un centro. También es posible distinguir diferentes regiones en
el plano traza-determinante donde el sistema lineal tiene valores propios reales y distintos.
Podemos observar que aqúı (T, D) se encuentra abajo de la parábola de ráız repetida. Si
T 2 − 4D > 0, los valores propios son

λ = T ±
√

T 2 − 4D

2 .

Si T > 0 el valor propio T +
√

T 2−4D
2 , es la suma de dos términos positivos y por tanto es

positiva. En este caso, solo tenemos que determinar el signo del otro valor propio T −
√

T 2−4D
2

para conocer el tipo de sistema.
Si D = 0, este valor propio es cero, por lo que nuestra matriz tiene un valor propio cero y
otro positivo. Si D > 0, entonces T 2 − 4D < T 2. Como estamos considerando el caso en que
T > 0, tenemos

√
T 2 − 4D < T y T −

√
T 2−4D
2 > 0. En este caso, ambos valores propios son

positivos y, como consecuencia, el origen es un repulsor.
Por otra parte, si T > 0 pero D < 0, entonces T 2 − 4D > T 2, de manera que

√
T 2 − 4D > T

y T −
√

T 2−4D
2 < 0. En esta situación espećıfica el sistema tiene un valor propio positivo y otro

negativo, por lo que el origen es un punto silla.
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En caso de que T < 0 y T 2 − 4D > 0, tenemos:

a) Dos valores propios negativos si D > 0.

b) Un valor propio negativo y uno positivo si D < 0.

c) Un valor propio negativo y un valor propio cero si D = 0.

Por último, a lo largo de la parábola de ráız repetida tenemos valores propios repetidos. Si
T < 0, ambos valores propios son negativos, si T > 0, son positivos y si T = 0, son cero.

Remark 2.1. Las cuatro curvas solución especiales que tienden hacia un punto silla cuan-
do t → ∞ o t → −∞ se denominan separatrices. Y tienen una importancia especial porque
separan las soluciones con diferentes comportamientos. Las separatrices estables son aque-
llas donde las soluciones tienden hacia el punto silla cuando t → ∞ mientras que en las
separatrices inestables las soluciones tienden hacia el punto silla cuanto t → −∞.

2.3. Sistemas no lineales y Principio de estabilidad linealizada.

En esta sección se estudiarán los sistemas no lineales autónomos, comenzaremos mostrándo
cómo puede aproximarse un sistema no lineal a un punto de equilibrio por medio de un
sistema lineal. Este proceso es conocido como linealización y es uno de los procedimientos que
se aplican con mayor frecuencia.

2.3.1. Linealización.

Consideremos la forma general de un sistema no lineal:


dx

dt
= f(x, y)

dy

dt
= g(x, y).

Supongamos que (x0, y0)T es un punto de equilibrio para este sistema. Queremos entender
lo que sucede con las soluciones cerca de (x0, y0)T , es decir, linealizar el sistema cerca de
(x0, y0)T . Introducimos nuevas variables

u = x − x0 , v = y − y0,

que mueven el punto de equilibrio al origen. Si x e y están cerca del punto de equilibrio
(x0, y0)T , entonces u y v tienden a cero. Como x = u + x0 y y = v + y0 y los números x0 y y0
son constantes, el sistema escrito en términos de u y v es
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
du

dt
= d(x − x0)

dt
= dx

dt
= f(x, y) = f(x0 + u, y0 + v)

dv

dt
= d(y − y0)

dt
= dy

dt
= g(x, y) = g(x0 + u, y0 + v).

Por tanto, tenemos 
du

dt
= f(x0 + u, y0 + v)

dv

dt
= g(x0 + u, y0 + v).

(2.8)

Si u = v = 0, el lado derecho de este sistema desaparece, por lo que hemos movido el
punto de equilibrio al origen en el plano uv. Ahora, estudiaremos la función analizando la
aproximación lineal, la cuál está dada por el plano tangente para funciones de 2 variables, por
lo tanto tenemos:

f(x0 + u, y0 + v) ≈ f(x0, y0) +
(

∂f

∂x
(x0, y0)

)
u +

(
∂f

∂y
(x0, y0)

)
v,

cuyo lado derecho es la ecuación para el plano tangente a la gráfica de f en (x0, y0). Podemos
entonces reescribir el sistema 2.8 como:

du

dt
= f(x0, y0) +

(
∂f

∂x
(x0, y0)

)
u +

(
∂f

∂y
(x0, y0)

)
v + · · ·

dv

dt
= g(x0, y0) +

(
∂g

∂x
(x0, y0)

)
u +

(
∂g

∂y
(x0, y0)

)
v + · · ·

Como f(x0, y0) = 0 y g(x0, y0) = 0, podemos usar la notación matricial para escribir el sistema
en forma breve:


du

dt

dv

dt

 =


∂f

∂x
(x0, y0) ∂f

∂y
(x0, y0)

∂g

∂x
(x0, y0) ∂g

∂y
(x0, y0)


u

v

+ . . .

La matriz de 2 × 2 de las derivadas parciales en esta expresión se llama matriz jacobiana del
sistema en (x0, y0). En consecuencia, el sistema linealizado en el punto de equilibrio (x0, y0)T

es:


du

dt

dv

dt

 =


∂f

∂x
(x0, y0) ∂f

∂y
(x0, y0)

∂g

∂x
(x0, y0) ∂g

∂y
(x0, y0)


u

v

 .
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Empleamos la linealización para estudiar el comportamiento de soluciones del sistema no lineal
cerca del punto de equilibrio (x0, y0)T . Observamos que para crear el sistema linealizado, sólo
necesitamos conocer las derivadas parciales de las componentes del campo vectorial en el
punto de equilibrio.

Remark 2.2. Considerando la clasificación de los puntos de equilibrio, además de la linea-
lización de un sistema no lineal, se resume en el cuadro (2.1) la estabilidad de los puntos de
equilibrio para las distintas condiciones de los valores propios λ1 y λ2 de un sistema planar:

Cuadro 2.1: Estabilidad e inestabilidad de los sistemas lineales y casi lineales [5]
Sistema Lineal Sistema casi Lineal

λ1, λ2 Tipo Estabilidad Tipo Estabilidad
λ1 > λ2 > 0 N Inestable N Inestable
λ1 < λ2 < 0 N Asintóticamente estable N Asintóticamente estable
λ2 > 0 < λ1 PS Inestable PS Inestable
λ1 = λ2 > 0 NE o N Inestable NE, N o PEs Inestable
λ1 = λ2 < 0 NE o N Asintóticamente estable NE, N o PEs Asintóticamente estable
λ1, λ2 = λ ± iµ
λ1 > 0 PEs Inestable PEs Inestable
λ1 < 0 PEs Asintóticamente estable PEs Asintóticamente estable
λ1 = iµ, λ1 = −iµ C Estable C o PEs Indeterminada

Tipo: N: nodo ; NE: nodo estrella ; PS: punto silla ; PEs : punto espiral ; C: centro.
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Caṕıtulo 3

Metodoloǵıa

El desarrollo de esta investigación implica seguir una serie de etapas secuenciales que con-
duzcan al objetivo de analizar la dinámica de un modelo matemático para la conservación de
la especie Huemul, teniendo en cuenta el efecto Allee, crecimiento loǵıstico y migración entre
parches acoplados.
Dado que el Huemul se encuentra en una situación cŕıtica de peligro de extinción, resulta de
vital importancia contar con herramientas que posibiliten la simulación de diversos escenarios
y la evaluación del impacto y la respuesta de la especie frente a distintas perturbaciones.
En primer lugar, se llevará a cabo una búsqueda de antecedentes bibliográficos que respalden
el desarrollo del modelo propuesto. Esta etapa permitirá recopilar información relevante y
fundamentos teóricos para la construcción del modelo. Posteriormente, se procederá a elaborar
un modelo poblacional para el Huemul que considere dos parches, efecto Allee y una función de
inmigración. Se buscará establecer relaciones y ecuaciones que representen de manera precisa
la dinámica del sistema. Una vez que el modelo matemático esté construido, se realizará un
estudio anaĺıtico de las propiedades cualitativas del modelo, tales como puntos de equilibrio,
linealización del sistema de ecuaciones diferenciales no lineal y la estabilidad local de un punto
de equilibrio.
Finalmente, se llevarán a cabo simulaciones utilizando diferentes combinaciones de paráme-
tros. Esto permitirá explorar diversos escenarios y obtener resultados que ayuden a com-
prender el comportamiento de la especie y evaluar su respuesta frente a perturbaciones. Es
importante destacar que cada etapa será realizada de manera rigurosa, con el objetivo de
asegurar la calidad y la validez del modelo propuesto.
En la figura (3.1) se muestra el diagrama de la metodoloǵıa a emplear para la presente
investigación.
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Figura 3.1: Diagrama de la metodoloǵıa de estudio
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3.1. Metodoloǵıa de modelamiento matemático

Ante la presencia del fenómeno del Efecto Allee, resulta necesario intervenir con el objetivo de
promover la recuperación de los niveles de población que permitan la supervivencia natural
de la especie. Una estrategia empleada consiste en la introducción de nuevos individuos en
el hábitat de la especie afectada [19]. En este contexto, una estrategia natural consiste en
establecer un flujo migratorio que esté determinado por el nivel poblacional de la especie. De
esta forma, se fomenta una migración más intensa en momentos de baja densidad poblacional,
mientras que se detiene por completo cuando la población alcanza la capacidad de carga
del medio ambiente. Dicha estrategia permite regular la distribución y el movimiento de los
individuos de manera acorde a las condiciones del entorno, contribuyendo aśı a la recuperación
de la población [19].
Cabe mencionar que existe una amplia variedad de estudios que abordan el análisis y modelado
del efecto Allee en enfoques deterministas, por ejemplo [1, 3, 8, 23]. Estos modelos emplean
ecuaciones diferenciales ordinarias para representar y comprender la dinámica poblacional.
Es relevante destacar que una de las posibles aproximaciones para abordar el efecto Allee, en
cual la baja tasa de encuentros entre individuos juega un papel fundamental, es mediante el
uso de ecuaciones diferenciales en derivadas parciales [19].
El efecto Allee y el crecimiento loǵıstico de una población se modela [1], mediante la ecuación
de la forma,

ẋ = rx

(
1 − x

K

)(
x

m
− 1

)
.

Además podemos plantear un modelo de metapoblación, ver [6, 9, 14, 21]


ẋ1(t) = f1(x1) − m1x1 + m2x2

ẋ2(t) = f2(x2) − m2x2 + m1x1.

La metapoblación representada en el modelo está formada por distintos parches donde co-
existen poblaciones de la misma especie, aunque con tamaños poblacionales diversos. En cada
parche, estas poblaciones alcanzarán su capacidad máxima de acuerdo con las condiciones
ambientales espećıficas. Como resultado, se genera una dinámica poblacional que implica el
desplazamiento de individuos de un parche a otro, lo que a su vez conlleva a la colonización
o abandono de dichos parches. Estos movimientos se llevan a cabo a través de corredores que
conectan los distintos parches.
Asumiremos que cuando la población aumenta hasta alcanzar la capacidad de carga, la inmi-
gración es nula. Mientras que cuando la población disminuye a cero, la inmigración aumenta.
En base a las ecuaciones y las hipótesis previamente mencionadas, el modelo para describir la
dinámica de poblaciones se expresa mediante el siguiente sistema de ecuaciones diferenciales:
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
ẋ1(t) = r1x1

(
1 − x1

K1

)(
x1
m

− 1
)

+ x2f(x1)

ẋ2(t) = r2x2

(
1 − x2

K2

)
− x2f(x1).

3.2. Metodoloǵıa de aplicación de las teoŕıas matemáticas

Se demostrará la existencia de soluciones del modelo empleando los teoremas afines existentes
en la literatura [4] , [13]. En particular un problema de valor inicial con dato inicial positivo
genera una solución no negativa.
Se llevará a cabo un estudio cualitativo del sistema no lineal mediante la determinación de
los puntos de equilibrio. Posteriormente, se procederá a realizar la linealización correspon-
diente con el objetivo de obtener el polinomio caracteŕıstico, el cual nos brindará información
sobre los valores propios del sistema. Esta caracterización de los puntos de equilibrio nos per-
mitirá analizar la estabilidad de los mismos y, a su vez construir los campos de direcciones
correspondientes. [4].

3.3. Metodoloǵıa de aplicación de metodos numéricos

Las simulaciones matemáticas para el modelo con dos parches, se realizarán para analizar
y evaluar el modelo propuesto, mediante las funciones disponibles en matplotlib.pyplot. Los
campos de direcciones y los puntos de equilibrio se representarán mediante programa Geoge-
bra.

3.4. Discusión Metodológica

Los fundamentos de nuestro modelo matemático están de acuerdo con la literatura abordada
acerca del efecto Allee, además si consideramos la presencia de dos parches y una función
de inmigración, nuestro modelo es coherente con aquellos de metapoblación. Vale la pena
reconocer que nuestro enfoque es determinista y no consideramos un enfoque espacial de la
población. Este aspecto podŕıa ser estudiado e incluido en un trabajo futuro, en este sentido se
podŕıan considerar un modelo basado en ecuaciones en derivadas parciales. Además el estudio
de las propiedades cualitativas de un sistema planar suele realizarse por medio del estudio de
la estabilidad de sus puntos de equilibrio. Lo anterior está acorde con diferentes trabajos en
la materia [12] , [19].
Diferentes trabajos han considerado una especie con efecto Allee, en nuestro caso estamos
considerando cómo prevenir la extinción bajo el efecto Allee lo cuál es novedoso. En este
trabajo, se ampĺıa el modelo estudiado por [19] a un modelo de dos parches, además de
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emplear técnicas diferentes a las utilizadas en el art́ıculo antes mencionado, para abordar el
sistema de ecuaciones diferenciales.
Por otro lado, en [12] consideran el análisis de un modelo depredador-presa derivado del modelo
Leslie-Gower, dónde el efecto Allee en el modelo contempla una función de crecimiento de la
presa. Se demuestra que el efecto Allee modifica significativamente la dinámica del sistema
original. El modelo es bidimensional y los autores demostraron la existencia de soluciones
no negativas generadas a partir de una condición inicial positiva. Además, determinaron los
puntos de equilibrio de la ecuación y se estudió la linealización del sistema de ecuaciones
diferenciales no lineal. Junto a ello, demostraron la existencia de subconjuntos de parámetros
para los cuales el sistema puede tener Bifurcación de Bogdanov-Takens, Curvas homocĺınicas,
Bifurcación de Hopf y la existencia de dos ciclos ĺımite. El alcance de nuestra metodoloǵıa
no considera un estudio acabado de las bifurcaciones, solo la estabilidad de los puntos de
equilibrio mediante la linealización de la ecuación diferencial.
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Caṕıtulo 4

Resultados

En este caṕıtulo, se exponen los resultados fundamentales de la presente investigación, que
presenta un modelo matemático que incorpora dos parches ecológicos, el fenómeno Allee y una
función de inmigración espećıfica para la especie Huemul. La exposición inicia con el análisis
del modelo propuesto para dos parches, detallando sus propiedades cualitativas y destacando
los resultados más relevantes obtenidos a través del campo de direcciones y simulaciones
numéricas.

4.1. Formulación del modelo

El modelo propuesto se construyó en base a la ecuación de crecimiento loǵıstico de una
población y una expresión que representa el efecto Allee. Junto con ello se incorpora una
función migración de la forma,

f(x, y) = ry

(
1 − x

K

)
.

El sistema de ecuaciones diferenciales que se obtiene es el siguiente:


ẋ = rx

(
1 − x

K

)(
x

m
− 1

)
+ ry

(
1 − x

K

)
ẏ = ry

(
1 − y

m

)
− ry

(
1 − x

K

) , (4.1)

donde x(t) e y(t) representan las poblaciones en el tiempo t, K es la capacidad de carga del
medio, m representa el umbral Allee y r corresponden a las tasas intŕınsecas de crecimiento
de x e y respectivamente.
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4.2. Equilibrios del modelo

Se procedió a determinar los puntos de equilibrio comenzando con igualar la segunda ecuación
de (4.1) a cero, para luego despejar la variable y:

ry

[(
1 − y

m

)
−
(

1 − x

K

)]
= 0,

de donde obtenemos,
y = 0 , − y

m
+ x

K
= 0. (4.2)

El valor obtenido y = 0 lo reemplazamos en la primera ecuación de (4.1):

rx

(
1 − x

K

)(
x

m
− 1

)
+ ry

(
1 − x

K

)
= 0,

luego,
x = 0 , x = K , x = m.

Por lo tanto, obtenemos los puntos de equilibrio: P1(0, 0) , P2(K, 0) , P3(m, 0).
De la ecuación (4.2)

− y

m
+ x

K
= 0,

obtenemos
y = mx

K
(4.3)

Ahora reemplazamos la ecuación (4.3) en la primera ecuación de (4.1):

rx

(
1 − x

K

)(
x

m
− 1

)
+ r

mx

K

(
1 − x

K

)
= 0,

factorizamos esta ecuación por (K − x) resulta:

(K − x)
[

rx

K

(
x

m
− 1

)
+ rmx

K2

]
= 0. (4.4)

De la ecuación (4.4) obtenemos:

x = K, (4.5)

rx

K

(
x

m
− 1

)
+ rmx

K2 = 0. (4.6)

Luego, reemplazamos (4.5) en la segunda ecuación de (4.1) y obtenemos: y = 0 e y = m.
Aśı se obtienen los puntos de equilibrio (K, 0) y (K, m), pero (K, 0) es igual a P2. Por lo tanto
el cuarto punto de equilibrio es P4(K, m).
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Desarrollamos la ecuación (4.6) :

rx

K

(
x

m
− 1

)
+ rmx

K2 = 0,

se tiene
x

[
r

K

(
x

m
− 1

)
+ rm

K2

]
= 0,

obtenemos:

x = 0, (4.7)

x = m − m2

K
. (4.8)

Reemplazamos (4.7) en la segunda ecuación de (4.1) y obtenemos y = 0, luego se obtiene el
punto de equilibrio P1(0, 0) encontrado anteriormente.
Ahora, reemplazamos (4.8) en (4.3) obtenemos:

y = m2

K
− m3

K2 .

Por lo tanto obtenemos el punto de equilibrio P5(m − m2

K , m2

K − m3

K2 ).
Los puntos de equilibrio obtenidos a analizar son los siguientes:

P1(0, 0), P2(K, 0), P3(m, 0), P4(K, m), P5

(
m − m2

K
,
m2

K
− m3

K2

)
.

4.3. Análisis de estabilidad local de los equilibrios

Para analizar la estabilidad de las soluciones obtenemos las derivadas parciales respectivas del
sistema de ecuaciones diferenciales (4.1), resulta la matriz:

J =


2rx

m
− r − 3x2r

Km
+ 2xr

K
− ry

K
r(1 − x

K
)

ry

K
−2ry

m
+ rx

K

 .

Y se define la ecuación caracteŕıstica como:

|J − λI| = 0.
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a) Análisis para el punto (0, 0)
Al evaluar el punto de equilibrio en la matriz J resulta:

J(0, 0)T =
[
−r r
0 0

]
.

La ecuación caracteŕıstica queda definida como:

∣∣∣∣∣−r − λ r
0 0 − λ

∣∣∣∣∣ = 0.

Siendo el polinomio caracteŕıtico obtenido:

λ2 + λr = 0.

Por lo tanto, tenemos que los valores de λ corresponden a λ1 = 0 y λ2 = −r < 0;
como los valores propios son reales y distintos, el punto (x, y)T = (0, 0)T es inestable y
corresponde a un punto silla.

b) Análisis para el punto (K, 0)
Al evaluar el punto de equilibrio en la matriz J resulta:

J(K, 0)T =

−Kr

m
+ r −r

0 r

 .

La ecuación caracteŕıstica queda definida como:

∣∣∣∣∣∣−
Kr

m
+ r − λ −r

0 r − λ

∣∣∣∣∣∣ = 0.

Siendo el polinomio caracteŕıtico obtenido:

λ2 + λ

(
Kr

m
− 2r

)
− Kr2

m
+ r2 = 0.

Por lo tanto, tenemos que los valores propios son reales y distintos, y corresponden a
λ1 = r > 0 y λ2 = r − Kr

m = r(1 − K
m ) < 0, por la tabla (2.1) el punto de equilibrio

(x, y)T = (K, 0)T es inestable y corresponde a un punto silla.
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c) Análisis para el punto (m, 0)
Al evaluar el punto de equilibrio en la matriz J resulta:

J(m, 0)T =


r − mr

K
r

(
1 − m

K

)

0 mr

K

 .

La ecuación caracteŕıstica queda definida como:

∣∣∣∣∣∣∣
r − mr

K
− λ r

(
1 − m

K

)
0 mr

K
− λ

∣∣∣∣∣∣∣ = 0.

Siendo el polinomio caracteŕıtico obtenido:

λ2 − rλ + mr2

K
− m2r2

K2 = 0.

Por lo tanto, tenemos que los valores de λ corresponden a

λ1 =
r +

√
r2 − 4mr2

K
+ 4m2r2

K2

2 = r − rm

K

y

λ2 =
r −

√
r2 − 4mr2

K
+ 4m2r2

K2

2 = rm

K
,

como λ1 = r − rm
K = r(1 − m

K ) > 0 y λ2 = rm
K > 0, los valores propios son reales,

positivos y distintos, por la tabla (2.1) el punto de equilibrio (x, y)T = (m, 0)T es un
punto fijo inestable y corresponde a un nodo.

d) Análisis para el punto (K, m)
Al evaluar el punto de equilibrio en la matriz J resulta:

J(K, m)T =


−Kr

m
+ r − mr

K
0

rm

K
−r

 .

La ecuación caracteŕıstica queda definida como:
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∣∣∣∣∣∣∣
−Kr

m
+ r − mr

K
− λ 0

rm

K
−r − λ

∣∣∣∣∣∣∣ = 0.

Siendo el polinomio caracteŕıtico obtenido:

λ2 + r

(
K

m
+ m

K

)
λ + r2

(
K

m
− 1 + m

K

)
= 0.

Por lo tanto, tenemos que los valores de λ corresponden a:

λ1 = r

2

−
(

K

m
+ m

K

)
+

√(
K

m
+ m

K

)2
− 4

(
K

m
− 1 + m

K

)
y

λ2 = r

2

−
(

K

m
+ m

K

)
−

√(
K

m
+ m

K

)2
− 4

(
K

m
− 1 + m

K

) .

Para determinar la naturaleza de los valores propios, se procede a analizar el discrimi-
nante

△ = K2

m2 + 6 + m2

K2 − 4 K

m
− 4 m

K
.

Analizaremos este discriminante haciendo u = m
K , generando la función:

f(u) = u4 − 4u3 + 6u2 − 4u + 1,

cuya gráfica está dada en la figura (4.1).

Figura 4.1: Gráfica de la función f(u) = u4 − 4u3 + 6u2 − 4u + 1
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Analizamos la gráfica de esta función y observamos que,

d1) Si f(u) = 0 entonces su única ráız u = 1 y se sigue que m
K = 1 entonces K = m, lo

que representa una contradicción puesto que K > m. Luego △ ≠ 0.
d2) Notamos que f(u), función polinómica de grado cuatro, es cóncava hacia arriba

con unica intersección en el eje X, el punto (1, 0) luego △ > 0.

Entonces se sigue que:

(
K

m
+ m

K

)2
− 4 ·

(
K

m
− 1 + m

K

)
> 0. (4.9)

Desarrollando la desigualdad, (4.9)

(
K
m + m

K

)2
> 4 ·

(
K
m + m

K − 1
)

(
K
m + m

K

)2
> 4 ·

(
K
m + m

K

)
> 4 ·

(
K
m + m

K − 1
)

(
K
m + m

K

)2
> 4 ·

(
K
m + m

K

)
.

De donde se sigue que,

K

m
+ m

K
> 4. (4.10)

Considerando que m
K es un valor muy pequeño, entonces por (4.10) obtenemos K > 4m.

De acuerdo el análisis anterior, concluimos que si △ > 0 y K > 4m, los valores propios
son reales, distintos y negativos, por la tabla (2.1) el punto de equilibrio dado por
(x, y)T = (K, m)T es un nodo asintóticamente estable (atractor).

e) Análisis para el punto
(

m − m2

K
,
m2

K
− m3

K2

)
Al evaluar el punto de equlibrio en la matriz J resulta:

J

(
m − m2

K
,
m2

K
− m3

K2

)T

=

r − 3 rm
K + 3 rm2

K2 − 2 rm3

K3 r − rm
K + rm2

K2

rm2

K2 − rm3

K3 − rm
K + rm2

K2

 .

La ecuación caracteŕıstica queda definida como:

∣∣∣∣∣∣∣
r − 3 rm

K + 3 rm2

K2 − 2 rm3

K3 − λ r − rm
K + rm2

K2

rm2

K2 − rm3

K3 − rm
K + rm2

K2 − λ

∣∣∣∣∣∣∣ = 0.
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Siendo el polinomio caracteŕıtico obtenido:

λ2 +
(

−r + 4 rm

K
− 4 rm2

K2 + 2 rm3

K3

)
λ − r2m

K
+ 3 r2m2

K2 − 4 r2m3

K3 + 3 r2m4

K4 − r2m5

K5 = 0.

Para determinar la naturaleza de los valores propios, se procede al siguiente análisis de
la ecuación de segundo grado de la forma ax2 + bx + c = 0, donde,

a = 1 , b = −r+4 rm

K
−4 rm2

K2 +2 rm3

K3 , c = −r2m

K
+3 r2m2

K2 −4 r2m3

K3 +3 r2m4

K4 − r2m5

K5 .

Ahora estudiaremos el parámetro b de la ecuación de segundo grado, para analizar los
casos b = 0 , b > 0 y b < 0. de esta forma podremos determinar la naturaleza de los
valores propios λ1 y λ2.
Caso I. Analizamos cuando b = 0, es decir,

b = −r + 4 rm

K
− 4 rm2

K2 + 2 rm3

K3 = 0,

dividiendo por r se obtiene:

−1 + 4 m

K
− 4 m2

K2 + 2 m3

K3 = 0,

hacemos u = m
K generando la función :

f(u) = 2u3 − 4u2 + 4u − 1, (4.11)

cuya gráfica está dada en la figura (4.2):

Figura 4.2: Gráfica de la función f(u) = 2u3 − 4u2 + 4u − 1

Observamos que cuando u = 0.35, es decir, m = 0.35K se tiene que b = 0.
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Se sigue que,

λ2 − c = λ2 −
(

r2m

K
− 3 r2m2

K2 + 4 r2m3

K3 − 3 r2m4

K4 + r2m5

K5

)
= 0,

Obtenemos

λ = ±
√

c = ±

√
r2m

K
− 3 r2m2

K2 + 4 r2m3

K3 − 3 r2m4

K4 + r2m5

K5 .

Examinamos el signo de c suponiendo que c = 0, es decir,

r2m

K
− 3 r2m2

K2 + 4 r2m3

K3 − 3 r2m4

K4 + r2m5

K5 = 0,

multiplicando por K
r2m

se sigue que,

1 − 3 m

K
+ 4 m2

K2 − 3 m3

K3 + m4

K4 = 0.

Hacemos u = m
K generamos la función

g(u) = u4 − 3u3 + 4u2 − 3u + 1,

cuya gráfica está dada por la figura (4.3)

Figura 4.3: Gráfica de la función g(u) = u4 − 3u3 + 4u2 − 3u + 1

De la figura (4.3) se infiere que si u = 1, entonces m = K, que es una contradicción y
luego c ̸= 0, más aún de la misma figura se aprecia que c > 0.
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Finalmente los valores propios

λ1 =

√
r2m

K
− 3 r2m2

K2 + 4 r2m3

K3 − 3 r2m4

K4 + r2m5

K5 > 0

λ2 = −

√
r2m

K
− 3 r2m2

K2 + 4 r2m3

K3 − 3 r2m4

K4 + r2m5

K5 < 0.

Caso II. Analizamos cuando b > 0. La función polinómica de grado tres, dada en (4.11),
es concava hacia arriba para el intevalo ]0.35, +∞[. Concluimos que el valor b es positivo
cuando u ∈]0.35, +∞[, luego: m

K
> 0.35, sin embargo debemos considerar la condición

m

K
< 1; por lo tanto m

K
∈]0.35, 1[. Analizado lo anterior, tenemos:

i) Si b > 0 con m

K
∈]0.35, 1[.

λ1 = 1
2(−b +

√
b2 − 4ac) , λ2 = 1

2(−b −
√

b2 − 4ac).

Realizando el análisis del discriminante

∆ = 1 − 4 m

K
+ 12 m2

K2 − 20 m3

K3 + 20 m4

K4 − 12 m5

K5 + 4 m6

K6 .

Analizaremos este discriminante haciendo u = m
K , generando la función:

f(u) = 4 u6 − 12 u5 + 20 u4 − 20 u3 + 12 u2 − 4 u + 1,

cuya gráfica está dada en la figura (4.4), que nos muestra ∆ = b2 − 4ac > 0. Asi
obtenemos 2 valores propios distintos y reales.

Figura 4.4: Gráfica de la función f(u) = 4 u6 − 12 u5 + 20 u4 − 20 u3 + 12 u2 − 4 u + 1.
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Para analizar el valor propio λ1 supondremos que
√

b2 − 4ac < b, luego c > 0.
Como

c = −r2m

K
+ 3 r2m2

K2 − 4 r2m3

K3 + 3 r2m4

K4 − r2m5

K5 ,

se sigue que:

−m

K
+ 3 m2

K2 − 4 m3

K3 + 3 m4

K4 − m5

K5 > 0.

Hacemos u = m
K ,

−u5 + 3u4 − 4u3 + 3u2 − u > 0,

factorizamos por u,

u(−u4 + 3u3 − 4u2 + 3u − 1) > 0,

obtenemos,
u > 0 , −u4 + 3u3 − 4u2 + 3u − 1 > 0.

Construimos la función f(u) = −u4 + 3u3 − 4u2 + 3u − 1, cuya gráfica se muestra
en la figura (4.5):

Figura 4.5: Gráfica de la función f(u) = −u4 + 3u3 − 4u2 + 3u − 1.

Como la función f(u) es cóncava hacia abajo, claramente se observa que c < 0,
luego se debe cumplir que −b +

√
b2 − 4ac > 0, por lo tanto el valor propio λ1 es

positivo. Por otro lado, b > 0 entonces la expresión −b −
√

b2 − 4ac < 0, luego el
valor propio λ2 es negativo.

ii) Si b < 0 con m

K
∈]0, 0.35[.

λ1 = 1
2(−b +

√
b2 − 4ac) , λ2 = 1

2(−b −
√

b2 − 4ac).
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Como b < 0 entonces la expresión −b +
√

b2 − 4ac es positiva, por lo tanto el
valor propio λ1 es positivo. Por otra parte, como −b > 0 entonces se tiene que la
expresión−b −

√
b2 − 4ac es negativa, por lo tanto el valor propio λ2 es negativo.

Finalmente, se concluye que los valores propios son reales y distintos, por la tabla (2.1)
el punto de equilibrio (x, y)T =

(
m − m2

K , m2

K − m3

K2

)T
es un punto silla.

4.4. Campo de Direcciones

En esta sección se mostrará el cuadro con los valores de cada parámetro y la simulación del
campo de direcciones mediante sofware Geogebra para 4 puntos de equilibrio del sistema de
ecuaciones diferenciales:

Punto de equilibrio (x, y)T = (K, m)T atractor estable, 0 < r ≤ 1 y K > 4m.

Cuadro 4.1: Parámetros simulación modelo
Parámetros Descripción Valores
r Tasa intŕınseca per cápita 1
m Umbral Allee 20
K Capacidad de carga ambiental 90

Figura 4.6: Punto de equilibrio (K, m)T
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Punto de equilibrio (x, y)T = (K, 0)T inestable, 0 < r ≤ 1 y K
m > 1:

Cuadro 4.2: Parámetros simulación modelo
Parámetros Descripción Valores
r Tasa intŕınseca per cápita 0.5
m Umbral Allee 30
K Capacidad de carga ambiental 40

Figura 4.7: Punto de equilibrio (K, 0)T

Punto de equilibrio (x, y)T = (m, 0)T inestable, 0 < r ≤ 1 ; r(1 − m
K ) > 0 ; rm

K > 0 y
K
m > 1.

Cuadro 4.3: Parámetros simulación modelo
Parámetros Descripción Valores
r Tasa intŕınseca per cápita 0.9
m Umbral Allee 20
K Capacidad de carga ambiental 100

Figura 4.8: Punto de equilibrio (m, 0)T
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Punto de equilibrio (x, y)T = (m − m2

K , m2

K − m3

K2 )T inestable, 0 < r ≤ 1 y 0.35 < m
K < 1.

Cuadro 4.4: Parámetros simulación modelo
Parámetros Descripción Valores
r Tasa intŕınseca per cápita 1
m Umbral Allee 35
K Capacidad de carga ambiental 70

Figura 4.9: Punto de equilibrio (m − m2

K , m2

K − m3

K2 )T
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4.5. Simulaciones numéricas

Para las simulaciones numéricas del modelo propuesto se consideró el punto de equilibrio
(x, y)T = (K, m)T con las condiciones 0 < r ≤ 1 y K > 4m, los valores de cada parámetro
están señalados en cada figura, realizando un total de 2 simulaciones.

Figura 4.10: Población v/s Tiempo
r = 0, 8; m = 20; K = 100 ; parche 1 : linea roja ; parche 2: linea azul

Figura 4.11: Población v/s Tiempo
r = 0, 5; m = 25; K = 110 ; parche 1: linea roja ; parche 2: linea azul
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Caṕıtulo 5

Conclusiones

El modelo propuesto en este trabajo se fundamenta en base a las ecuaciones de crecimiento
poblacional, crecimiento loǵıstico y una expresión matemática que representa el efecto Allee
fuerte, junto con ello una función migración f(x, y) = ry(1 − x

K ), desde un parche ecologico
2 (reserva de huemules) hacia un parche ecologico 1. En este escenario, el parche ecologico 1
exhibe una población considerablemente reducida en comparación con su capacidad de carga,
situándose por debajo del umbral Allee, es decir, adoptando un comportamiento loǵıstico con
efecto Allee. Cabe señalar que no existen modelos matemáticos previos aplicados y relaciona-
dos al estudio de la especie Huemul. Los parámetros fundamentales en el modelo corresponden:

K : Capacidad de carga ambiental.

m : Umbral Allee.

r : Tasa intŕınseca de crecimiento poblacional.

El objetivo de la función migración f(x, y) = ry(1 − x
K ) es evitar la extinción de la especie

en estudio, en este sentido se consideraron tasas de reproducción iguales en ambos parches
ecológicos.

Se determinaron algebraicamente los equilibrios del sistema (4.1), siendo posible estudiar
su estabilidad local. La establidad es la siguiente:

punto de equilibrio (x, y)T = (0, 0)T es inestable (punto silla), los valores propios son
reales y distintos.

punto de equilibrio (x, y)T = (K, 0)T es un punto silla.

punto de equilibrio (x, y)T = (m, 0)T es un nodo.

punto de equilibrio (x, y)T = (K, m)T es un nodo asintóticamente estable.

punto de equilibrio (x, y)T = (m − m2

K , m2

K − m3

K2 )T es un punto silla.
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La simulación del campo de direcciones del punto de equilibrio (x, y)T = (0, 0)T no se realizó
puesto desde una perspectiva ecológica, este punto indica la ausencia de especies en ambos
parches ecológicos.

Las simulaciones de los campos de direcciones mediante Geogebra, muestran que los pun-
tos de equilibrio (x, y)T = (K, 0)T , (x, y)T = (m, 0)T , (x, y)T = (m − m2

K , m2

K − m3

K2 )T son
inestables localmente, la estabilidad local de estos tres puntos está sujeta a las condiciones:
0 < r ≤ 1 ; K

m > 1 ; r(1 − m
K ) > 0 ; rm

K > 0 ; 0.35 < m
K < 1.

Las simulación del campo de direcciones mediante Geogebra, muestra que el punto de equili-
brio (x, y)T = (K, m)T es asintóticamente estable. Mediante simulaciones numéricas en mat-
plotlib.pyplot se comprobó para este punto considerando las condiciones 0 < r ≤ 1 y K > 4m,
la estabilidad de la población en el tiempo en ambos parches ecológicos.

El modelo propuesto de 2 parches ecológicos se podŕıa extender a un modelo de 3 parches
ecológicos incorporando una expresión matemática que represente a un depredador. O bien
que este nuevo parche ecológico incorpore una nueva función de migración, que actue como
una reserva de la especie Huemul para el parche 2 con una tasa de reproduccion r2 distinta a r.

La limitación que presenta este modelo dice relación principalmente con plantear una fun-
ción de migración mas compleja desde el punto de vista de la cantidad de parámetros, una
función de migración de estas caracteŕısticas dificultaŕıa determinar los puntos de equilibrio
del sistema de ecuaciones diferenciales.

La relevancia de esta investigación radica en la ausencia de modelos que aborden de manera
integral el comportamiento de la especie Huemul frente al efecto Allee y su interacción con
una función de migración. Este vaćıo en la literatura resalta la necesidad de llenar un espacio
crucial en la comprensión de cómo estos factores influyen en el comportamiento migratorio de
los huemules, subrayando la importancia de este estudio.
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