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Maǵıster en Biomatemática
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asesoramiento experto en el desarrollo del modelo RN AEP fueron esenciales para la correcta
implementación y validación de esta herramienta dentro del estudio.

Agradezco sinceramente al Dr. Marcelo Rivas por brindarme un espacio idóneo en el Labora-
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Finalmente, a todxs y cada unx quienes han hecho posible que (aún) exista.

Gabriel Herrera Hernández
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2.4. Resolución numérica del modelo RN AEP . . . . . . . . . . . . . . . . . . . . 73
2.5. ¿Coherencia entre análisis estructural y dinámico? . . . . . . . . . . . . . . . . 77
2.6. Introducción de perturbaciones en comunidades ecológicas . . . . . . . . . . . . 78

2.6.1. Perturbaciones y persistencia ecológica . . . . . . . . . . . . . . . . . . . 78

II Sostenibilidad en comunidades ecológicas reales 87

3. Modelamiento de comunidades ecológicas reales 91
3.1. Modelo de una comunidad ecológica real: Isla Navarino. . . . . . . . . . . . . . 92

v



3.1.1. Análisis de la modelación ecológica tradicional en Isla Navarino . . . . . 92
3.1.2. Procedimiento de modelado con RN de la comunidad ecológica Isla Na-

varino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.1.3. Narrativa ecológica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.1.4. Red de reacciones Isla Navarino (RN IN) . . . . . . . . . . . . . . . . . 96

4. Sostenibilidad estructural y dinámica 101
4.1. Potenciales perturbaciones de la RN IN . . . . . . . . . . . . . . . . . . . . . . 101
4.2. Cuantificación de la sostenibilidad de comunidades ecológicas . . . . . . . . . . 102

4.2.1. Algoritmo de cálculo de la sostenibilidad en comunidades ecológicas . . 102
4.2.2. Descripción general metodológica del análisis computacional . . . . . . . 102
4.2.3. La sostenibilidad de la comunidad ecológica RN IN . . . . . . . . . . . . 104

4.3. La sostenibilidad de la comunidad ecológica RN IN . . . . . . . . . . . . . . . 109

5. Consideraciones finales 117
5.1. Recomendaciones para otros estudios . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2. Evaluación de las implicaciones del estudio . . . . . . . . . . . . . . . . . . . . 118
5.3. Vinculación de los resultados con investigaciones existentes . . . . . . . . . . . 118
5.4. Limitaciones de la investigación . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.5. Importancia y significado de la investigación . . . . . . . . . . . . . . . . . . . . 120
5.6. Resultados inesperados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
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1. Comparativa de caracteŕısticas entre lenguajes tradicionales de modelación. . . 6
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boración propia en Python™, libreŕıa pyCOT (Veloz, 2025). . . . . . . . . . . 31

1.3. Resumen de conclusiones de las simulaciones dinámicas en el cuadro 1.2. . . . . 32
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Resumen

La presente investigación busca dar respuesta a la necesidad de comprender la
sostenibilidad en comunidades ecológicas por medio de utilizar redes de reacciones
como marco de modelamiento de las interacciones complejas entre los componen-
tes de este tipo de sistemas. Los conceptos que se destacan con mayor importancia
son la biodiversidad y cómo mediante perturbaciones, se puede influenciar la per-
sistencia y la resiliencia de las comunidades ecológicas.

Los objetivos propuestos son validar un modelo basado en redes de reacciones pa-
ra una comunidad ecológica teórica con interacciones complejas y, posteriormente,
aplicar la validación de modelamiento con redes de reacciones en una comunidad
ecológica real. Se buscará construir una red de reacciones que represente el siste-
ma seleccionado, identificar reǵımenes de persistencia y analizar la respuesta del
sistema ante perturbaciones, proponiendo una medida de la sostenibilidad para el
modelo.

La principal problemática implicada en la investigación radica en la dificultad del
modelamiento de la sostenibilidad en comunidades ecológicas reales, consideran-
do la alta cantidad de especies interactuantes, las interrelaciones complejas y las
perturbaciones que pueden influir en su dinámica. Como hipótesis de la investiga-
ción, se propone que las comunidades ecológicas reales se comportan como redes
de reacciones.

Para dar respuesta a los objetivos definidos y la problemática identificada, se
propone un enfoque metodológico que incluye la generación de modelos a partir
de una narrativa ecológica, la validación de redes de reacciones en colaboración
con expertos, Asimismo, se utilizarán simulaciones para proponer una métrica de
la sostenibilidad de comunidades ecológicas reales permitiendo una comprensión
más profunda de la sostenibilidad en el contexto ecológico.
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Introducción

La ecoloǵıa es la rama de la bioloǵıa que estudia las relaciones de los diferentes seres vivos
entre śı y su relación con el entorno: “la bioloǵıa de los ecosistemas” (Margalef, 1974). Estudia
cómo estas interacciones entre los organismos y su ambiente afectan a propiedades como la
distribución o la abundancia. En el ambiente se incluyen las propiedades f́ısicas y qúımicas que
pueden ser descritas como la suma de factores abióticos locales, como el clima y la geoloǵıa, y
los demás organismos que comparten ese hábitat (factores bióticos). La comprensión de cómo
la biodiversidad afecta a la función ecológica es un área importante enfocada en los estudios
ecológicos. Por tanto, la ecoloǵıa es un campo interdisciplinario que incluye a la bioloǵıa y las
ciencias de la Tierra.

Entender más cabalmente las relaciones e interacciones que se generan en los sistemas
ecológicos (ecosistemas), y sus distintos componentes como, espećıficamente, las comunidades
ecológicas, ha ampliado la interdisciplinariedad que contempla la ecoloǵıa hacia comprender
cómo las comunidades ecológicas pueden ser sostenibles. Sin embargo, la conceptualización
de sostenibilidad aún es difusa. Se considera que la sostenibilidad está relacionada con con-
ceptos como resiliencia, capacidad de adaptación y vulnerabilidad. Sus factores de cambio
medioambientales y culturales (económicos, sociales) están sujetos a influencias mutuas (re-
troalimentaciones, dependencias y solapamientos) y propagan complejas relaciones causales
desde escalas locales a globales (Kovacs et al., 2020). Por lo que al estudiar comunidades
ecológicas es necesario considerar que estas se comportan como sistemas complejos.

El modelamiento de comunidades ecológicas desde una perspectiva no compleja ha sido
dominado históricamente por enfoques deterministas y reduccionistas, los cuales representan
los componentes de los sistemas ecológicos mediante estructuras matemáticas formales, como
ecuaciones diferenciales, con el objetivo de describir las interacciones entre componentes indivi-
duales. Este enfoque ha permitido avances importantes en la comprensión de procesos básicos
como la dinámica poblacional o los flujos de materia y enerǵıa. Sin embargo, presenta serias
limitaciones al intentar capturar propiedades emergentes como la resiliencia, la autoorganiza-
ción o la capacidad adaptativa de las comunidades ecológicas, ya que estas propiedades surgen
de interacciones contextuales, múltiples bucles de retroalimentación y contextos cambiantes.
Como resultado, los modelos convencionales tienden a simplificar en exceso la dinámica real

3



de las comunidades ecológicas, dificultando la predicción de su comportamiento ante pertur-
baciones o transiciones cŕıticas (Levin, 1998; Folke et al., 2010; DeAngelis and Grimm, 2020;
Moore and Trosper, 2021). Esta situación ha impulsado el surgimiento de nuevas aproximacio-
nes que reconocen la complejidad como una caracteŕıstica central de los sistemas ecológicos,
y las comunidades ecológicas, aunque su desarrollo aún se encuentra en desarrollo.

Como marco de modelamiento para sistemas complejos, ha sido ampliamente utilizada la
aproximación desde Redes de Reacciones (Veber et al., 2008). Una Red de Reacciones es una
especificación formal del proceso contextual de transformación que puede posiblemente pasar
en un entorno molecular (o in silico) determinado, mediante un conjunto de reacciones. Cada
reacción describe la formación de un contexto de interacción, representado por una colección
de entidades denotadas como reactantes (por ejemplo: especies moleculares, enerǵıa, etc.) y
sus transformaciones en otra colección de especies moleculares denotadas como productos
(Feinberg, 2019).

Un formalismo para analizar sistemas complejos y autoorganizados que se utiliza en el
modelamiento mediante redes de reacciones es la Teoŕıa de la Organización Qúımica. Esta
teoŕıa plantea que las redes se componen de subredes invariantes denominadas “Organizacio-
nes Qúımicas”. Las organizaciones qúımicas se caracterizan por ser conjuntos de entidades
cerrados (no se introducen nuevos elementos) y automantenidos (no se pierden elementos
existentes). (Heylighen et al., 2024). A partir de este punto, los términos “Organizaciones
Qúımicas”, “organizaciones” y “conjuntos de especies qúımicas persistentes” se utilizarán de
forma equivalente para aludir a una misma entidad conceptual, cuya definición se ha estable-
cido previamente.
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Antecedentes
En ecoloǵıa, la biodiversidad se refiere a la variedad de vida en todas sus formas, nive-

les y combinaciones, abarca la diversidad de ecosistemas, comunidades ecológicas, especies y
genes, aśı como los procesos ecológicos que los soportan. En este sentido, la resiliencia es-
tructural de una comunidad ecológica se vincula estrechamente con la organización funcional
de sus interacciones, lo cual puede resultar en una mayor eficiencia en procesos ecosistémicos
fundamentales. Entre estos se incluyen la productividad primaria y secundaria, aśı como la
generación de servicios ecosistémicos cŕıticos, tales como el reciclaje de nutrientes, la polini-
zación y la regulación bioclimática (Cardinale et al., 2012).

De la definición anterior de biodiversidad emerge el concepto de la Resiliencia Ecológica
como la capacidad de la dinámica de una comunidad ecológica de mantenerse en el largo plazo
y encontrar un estado de persistencia. Por lo que, el estudio de las funciones de las comu-
nidades ecológicas en estados alejados del equilibrio se vuelve un punto cŕıtico. Asimismo,
emerge el concepto de Complejidad Ecológica, que se manifiesta internamente debido a que
en el sistema son múltiples las entidades participantes y las interacciones entre ellas las que se
ponen en juego y externamente, por la influencia de la actividad humana y fenómenos como
el cambio climático.

Por lo tanto, como plantearon Veloz et al. en 2023, al estudiar la evolución de la Resiliencia
y Complejidad ecológicas de las comunidades ecológicas mediante el marco de modelamiento
con redes de reacciones, es preciso considerar aspectos como:

Perturbaciones: eventos o influencias que modifican la estructura de las configura-
ciones persistentes y desencadenan procesos de transición entre diferentes estructuras
dentro de la red de reacciones.

Incertezas: falta de certeza o predictibilidad en el comportamiento de las configuracio-
nes persistentes, especialmente en respuesta a perturbaciones o cambios en el entorno y
las perturbaciones en el contexto de la evolución estructural.

Régimen con incertezas: en referencia a un estado o modo de operación de las confi-
guraciones persistentes en el que la presencia de incertidumbre es un factor determinante
en su comportamiento y evolución.

Sostenibilidad: capacidad de las configuraciones persistentes para mantener su estruc-
tura y funciones a lo largo del tiempo, incluso frente a perturbaciones y cambios en el
entorno.

Cabe destacar que los conceptos de Resiliencia ecológica, Complejidad Ecológica, sosteni-
bilidad y Régimen con incertidumbres plantean la necesidad de un cambio en el abordaje de
las problemáticas que se presentan en las comunidades ecológicas. Cambio epistemológico que
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se viene desarrollando hace años en distintas investigaciones como las de Veloz and Razeto-
Barry (2017a), Veloz and Razeto-Barry (2017b), Veloz (2020), Kovacs et al. (2020), Veloz and
Flores (2021a), Veloz and Flores (2021b) y Veloz et al. (2023b).

Justificación del estudio

Antecedentes teóricos

En el Modelamiento Ecológico, el debate sobre complejidad y persistencia en las comuni-
dades ecológicas aún está abierto. Uno de los principales problemas de la ecoloǵıa teórica es
resolver cómo responden caracteŕısticas de las comunidades ecológicas como la resiliencia, la
resistencia, la robustez o, en términos más amplios, la persistencia, a los cambios en la diver-
sidad de especies, la riqueza, la conectividad o, más ampliamente, la complejidad (Veloz, 2020).

Por tanto, podemos decir que el principal problema en el modelado de comunidades ecológi-
cas radica en la incapacidad de los lenguajes tradicionales para abordar la complejidad de la
sostenibilidad. Esto se refleja en el cuadro 1, que presenta los principales lenguajes tradicio-
nales de modelado utilizados en sistemas complejos y, por ende, con potencial para el estudio
de comunidades ecológicas. Además, se destacan las principales caracteŕısticas de cada uno.

Lenguaje de
modelación

Cantidad de
Entidades

Cantidad de
Interacciones

Evolución
Dinámica

Meca-
nismo

Herramientas
anaĺıticas

Ecuaciones Dife-
renciales

Pocas Pocas Śı Śı Amplias

Redes Muchas Una No No Amplias

Basado en agen-
tes

Muchas Muchas Śı Parcial Limitadas

Cuadro 1: Comparativa de caracteŕısticas entre lenguajes tradicionales de modelación.

Por lo tanto, aún existen limitaciones en cuanto a los mecanismos y herramientas anaĺıticas
que ofrecen estos lenguajes para el modelado de comunidades ecológicas.

Modelamiento basado en Redes de Reacciones y la Teoŕıa de la Organización
Qúımica

Las limitaciones expuestas en los antecedentes teóricos plantean el desaf́ıo de utilizar un
lenguaje de modelamiento que permita profundizar en la comprensión de las comunidades
ecológicas. Por ello, surge la alternativa del modelamiento basado en Redes de Reacciones y
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la Teoŕıa de la Organización Qúımica.

Las Redes de Reacciones (RN, por sus siglas en inglés), en el ámbito matemático, son
sistemas de reacciones qúımicas que pueden modelarse utilizando la teoŕıa de redes. Este
enfoque implica representar las especies qúımicas como nodos y las reacciones como aristas,
permitiendo analizar dinámicas complejas a través de herramientas matemáticas como matri-
ces estequiométricas y sistemas de ecuaciones diferenciales (Feinberg, 1979).

Una herramienta anaĺıtica de RN es la Teoŕıa de la Organización Qúımica (COT, por sus
siglas en inglés). Esta teoŕıa es un formalismo para analizar sistemas complejos y autoorga-
nizados. Los elementos básicos de esta teoŕıa son las especies y las reacciones. Una reacción
transforma un conjunto de especies en otro, representando procesos elementales que dan lu-
gar a redes de reacciones autoorganizadas. Estas redes se componen de subredes invariantes
denominadas “Organizaciones”. Las organizaciones se caracterizan por ser cerradas (no se in-
troducen nuevas especies) y automantenidas (no se pierden especies existentes) (Heylighen
et al., 2024).

Lenguaje de
modelación

Cantidad de
Entidades

Cantidad de
Interacciones

Evolución
Dinámica

Meca-
nismo

Herramientas
anaĺıticas

Ecuaciones Dife-
renciales

Pocas Pocas Śı Śı Amplias

Redes Muchas Una No No Amplias

Basado en agen-
tes

Muchas Muchas Śı Parcial Limitadas

RN+COT Muchas Muchas Śı Śı Amplias

Cuadro 2: Comparativa de caracteŕısticas entre diferentes lenguajes de modelación incluido
RN+COT.

En consecuencia, el cuadro 2 integra el modelado mediante Redes de Reacciones y la Teoŕıa
de la Organización Qúımica, evidenciando cómo este enfoque supera las limitaciones de los
mecanismos y herramientas anaĺıticas en el modelado de comunidades ecológicas.

La capacidad de modelar sistemas complejos de manera diferenciada mediante el enfo-
que RN+COT ha impulsado su aplicación en diversas investigaciones sobre comunidades
ecológicas. A continuación, se presenta una recopilación de estudios teóricos que confirman
la aplicabilidad del modelado basado en RN+COT para el estudio de comunidades ecológicas:
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Veloz and Razeto-Barry (2017a) muestran cómo las RN pueden modelar interacciones
ecológicas y utilizar COT para formalizar conceptos ecológicos, como la invasión de
especies, entre otros.

Veloz and Razeto-Barry (2017b) muestran cómo con RN+COT se pueden modelar in-
teracciones ecológicas y los cambios estructurales que ocurren en sistemas ecológicos,
destacando la identificación de módulos independientes y los cambios cualitativos en las
RN.

Veloz and Flores (2021a) presentan un modelo de RN para estudiar interacciones endo-
simbióticas complejas, como la simbiosis entre corales y algas. El modelo aborda niveles
bioqúımicos y de proliferación celular, incluyendo mecanismos de regulación multiesca-
lares que estabilizan estas interacciones endosimbióticas, destacando la importancia del
enfoque multiescalar para entender estos sistemas ecológicos complejos.

Veloz and Flores (2021b) presentan un modelo mecańıstico de interacción endosimbióti-
ca utilizando RN. El modelo incluye tres capas de representación a diferentes escalas
temporales: intracelular, intercelular y orgańısmica. Como ejemplo, se realiza un análisis
numérico de los efectos de la interacción endosimbiótica a nivel intracelular.

Veloz et al. (2023b) proponen un enfoque basado en RN+COT para demostrar la au-
toorganización en comunidades ecológicas. Este marco teórico ofrece una perspectiva
novedosa para comprender la emergencia de estructuras complejas y la evolución de
sistemas vivos en entornos ecológicos.

A pesar de los avances en la investigación teórica sobre el modelado de comunidades
ecológicas mediante RN+COT, aún no existen aplicaciones contrastadas con el conocimiento
emṕırico de sistemas reales proporcionado por expertos en ecoloǵıa.

La modelación a través de Redes de Reacciones se fundamenta en la Teoŕıa de la Organi-
zación Qúımica, que describe cómo las interacciones entre especies qúımicas pueden dar lugar
a conjuntos de especies persistentes, cerrados estructuralmente y automantenidos (u organi-
zaciones).

La Teoŕıa de Organizaciones Qúımicas (Dittrich and di Fenizio, 2007) emerge como marco
conceptual para analizar sistemas reactivos complejos con dinámica constructiva. Su desarrollo
se enmarca en:

Problemas de autoorganización molecular en bioloǵıa sintética (Fontana and Buss,
1996).

Necesidad de formalizar transiciones entre estados estables en redes bioqúımicas.

Aplicaciones en biocomputación y diseño de sistemas P (Dittrich and di Fenizio, 2004).
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Con el fin de profundizar en la relación entre estructura y persistencia en el marco de las
Redes de Reacciones, a continuación se presentan los desarrollos matemáticos fundamentales
propuestos por Peter et al. (2010), Peter and Dittrich (2011) y Peter et al. (2021), los cuales
permiten formalizar estos conceptos y establecer condiciones precisas para evaluar la viabili-
dad y persistencia de las organizaciones en sistemas ecológicos.

Por un lado, según Peter et al. (2010) la viabilidad de estas organizaciones es crucial para
entender la dinámica de los sistemas, ya que algunas organizaciones pueden no ser factibles en
el espacio de concentraciones, lo que implica que no deben ser consideradas en el análisis. Por
otro lado, en 2011 Peter and Dittrich se enfocaron en que la comprensión de los conjuntos de
especies que pueden coexistir en un sistema qúımico a lo largo del tiempo es cŕıtica. Adicio-
nalmente, en el trabajo de Peter et al. (2021) se estableció que la identificación de conjuntos
de especies persistentes es crucial para comprender la dinámica de los sistemas de reacción-
difusión y su relación con la red de reacciones subyacente.

En conclusión, el estudio de la persistencia en comunidades ecológicas modeladas mediante
Redes de Reacciones ha evolucionado significativamente debido al desarrollo de herramientas
matemáticas orientadas a comprender la relación entre la estructura de la red y la dinámica
de las especies, proporcionando una base sólida para el estudio de la persistencia ecológica
desde una perspectiva matemática.

Desaf́ıos globales

La Organización de Naciones Unidas (ONU) definió, el 25 de septiembre de 2015, 17 Ob-
jetivos de Desarrollo Sostenible (ODS) como una agenda común de objetivos globales para
erradicar la pobreza, proteger el planeta y asegurar la prosperidad para todos (United Na-
tions, 2024c). Para el cumplimiento de las metas espećıficas que cada objetivo tiene, la ONU
planteó los 15 años siguientes a la fecha de su definición.

Por un lado, el ODS 15 busca gestionar sosteniblemente los bosques, luchar contra la
desertificación, detener e invertir la degradación de las tierras, detener la pérdida de biodiver-
sidad (United Nations, 2024a). Algunos de los aspectos más relevantes que señala la ONU en
relación a este ODS para esta propuesta de investigación son:

Figura 1: Gráfica ONU del ODS 15 (United Nations, 2024a).

“Los ecosistemas terrestres son vitales para el sostenimiento de la vida humana,
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contribuyen a más de la mitad del PIB mundial e incluyen diversos valores cultu-
rales, espirituales y económicos (United Nations, 2024a).”

“...el mundo se enfrenta a una triple crisis del cambio climático, a la contamina-
ción y a la pérdida de la biodiversidad...Los esfuerzos mundiales y regionales para
mantener los ecosistemas forestales, aśı como sus funciones sociales, económicas
y medioambientales, son esenciales especialmente para los páıses en desarrollo y
los trópicos (United Nations, 2024a).”

“La biodiversidad y los servicios de los ecosistemas que respalda también pueden
sentar las bases de las estrategias de adaptación al cambio climático y reducción del
riesgo de desastres, ya que pueden generar beneficios que aumenten la resiliencia
de las personas (United Nations, 2024a).”

“Un efecto irreversible de la actividad humana sobre el medio ambiente es la ex-
tinción de especies, lo que altera el equilibrio de la naturaleza y hace que los ecosis-
temas sean más frágiles y ofrezcan menos resistencia a las perturbaciones. Según
un reciente informe de la ONU sobre biodiversidad, cerca de un millón de especies
animales y vegetales están en peligro de extinción, en muchos casos en las próxi-
mas décadas, más que en cualquier otro momento en la historia de la humanidad
(United Nations, 2024a).”

“Debemos ser respetuosos con la fauna y únicamente participar en actividades
de ecoturismo gestionadas de forma responsable y ética para evitar perturbarla.
Las áreas protegidas bien gestionadas contribuyen a la salud de los ecosistemas,
lo que a su vez contribuye a la salud de las personas. Por ello, es fundamental
que las comunidades locales participen en el desarrollo y la gestión de estas áreas
protegidas (United Nations, 2024a).”

Por otro lado, el ODS 13 busca adoptar medidas urgentes para combatir el cambio climáti-
co y sus efectos (United Nations, 2024b). Algunos de los aspectos más relevantes que señala
la ONU en relación a este ODS para esta propuesta de investigación son:

Figura 2: Gráfica ONU del ODS 13 (United Nations, 2024b) .

“El cambio climático afectará a todas las personas de todos los páıses de todos
los continentes de alguna forma. Se avecina un cataclismo climático y no estamos

10



preparados para las posibles consecuencias. El cambio climático se debe a las acti-
vidades humanas y amenaza la vida en la Tierra tal como la conocemos... (United
Nations, 2024b)”

“El cambio climático está alterando las economı́as nacionales y afectando a las
distintas vidas y medios de subsistencia de muchas personas, especialmente las más
vulnerables. Entre 2010 y 2020, las regiones altamente vulnerables en las que viven
aproximadamente entre 3300 y 3600 millones de personas, experimentaron tasas
de mortalidad humana por inundaciones, seqúıas y tormentas 15 veces superiores
a las de las regiones con una vulnerabilidad muy baja (United Nations, 2024b).”

“...Para limitar el aumento global de la temperatura muy por debajo de los 2 [°C],
o incluso de 1,5 [°C], el mundo debe transformar sus sistemas energéticos, indus-
triales, de transporte, alimentarios, agŕıcolas y forestales. El mundo dio un primer
paso importante en diciembre de 2015 con la adopción del Acuerdo de Paŕıs, en
el que todos los páıses firmantes se comprometieron a tomar medidas para hacer
frente al cambio climático. A pesar de ello, se necesitan más medidas para cumplir
los objetivos (United Nations, 2024b).”

En consideración de lo expuesto anteriormente respecto a estos dos ODS podemos plantear
que esta propuesta considera directamente el ODS 15 e indirectamente el ODS 13. Debido
a que se reafirma la coherencia y necesidad de estudiar la sostenibilidad de los sistemas
ecológicos, y que es posible considerar que existe una relación sistémica entre la “vida de
ecosistemas terrestres” (ODS 15) y la “acción por el clima” (ODS 13).

Hacia Interdisciplina y sostenibilidad
El modelado matemático requiere necesariamente compatibilidad interdisciplinaria, dado

que su aplicación efectiva demanda la colaboración entre investigadores de diversas discipli-
nas. Según la Agencia Nacional de Investigación y Desarrollo de Chile (ANID), los estudios
interdisciplinarios se definen como aquellos que integran diferentes disciplinas y enfoques me-
todológicos tanto en su objeto de estudio como en su formulación investigativa. Esta con-
ceptualización se alinea con la propuesta de Urquiza et al. (2019), quien enfatiza que la
interdisciplina surge de la interpenetración disciplinaria, que es el proceso donde los marcos
teóricos y herramientas metodológicas de diferentes campos se combinan para generar nuevos
enfoques anaĺıticos.

Como se evidencia en la representación gráfica de la Figura 3, el logro de la sostenibili-
dad emerge precisamente en la intersección dialéctica entre las ciencias naturales y sociales.
Esta convergencia disciplinar responde a la necesidad de abordar fenómenos complejos que
operan en sistemas socioecológicos, donde las dinámicas ambientales y humanas interactúan
de manera contextual. Por consiguiente, el análisis de tales sistemas exige metodoloǵıas que
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trasciendan los ĺımites disciplinares tradicionales, integrando modelos matemáticos con pers-
pectivas cualitativas y cuantitativas de diversas áreas del conocimiento.

Sistemas socio-ecológicos

Durante la década del 2000, diferentes autores comenzaron a utilizar el término sistemas
socio-ecológicos (SSE). Los SSE son sistemas complejos integrados de comunidades humanas
y sus entornos naturales, donde las interacciones y retroalimentaciones entre componentes
sociales y ecológicos determinan la dinámica y el funcionamiento del sistema en su conjunto
(Folke et al., 2002; Berkes et al., 2003; Ostrom, 2009).

Sostenibilidad socio-ecológica

Podemos describir la sostenibilidad en SSEs como los procesos involucrados para que los
sistemas biológicos y sociales se mantengan productivos con el transcurso del tiempo. Por tan-
to, corresponde al equilibrio de una especie con los recursos de su entorno y su permanencia
en el sistema.

Espećıficamente, el concepto de Desarrollo Sostenible aparece en el Informe Brundtland
(World Commission on Environment and Development, 1987) denominado inicialmente co-
mo “Nuestro Futuro Común”. En este informe encontramos la siguiente frase que resume el
Desarrollo sostenible:

“Satisfacer las necesidades de las generaciones presentes sin comprometer las po-
sibilidades de las del futuro para atender sus propias necesidades. Los tres pilares
que se relacionan en el desarrollo sostenible son: economı́a, medio ambiente y
sociedad. La finalidad de su relación es que exista un desarrollo económico y so-
cial respetuoso con el medio ambiente (World Commission on Environment and
Development, 1987)”.

En los tres pilares descritos en esta frase, que describe el Desarrollo sostenible, (ver figura
3) se refleja expresamente la necesidad inminente de considerar más que solo los sistemas
ecológicos para el logro de un mejor futuro.
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Figura 3: Esquema de desarrollo sostenible según la Doctora Gro Harlem Brundtland (Wiki-
media Commons contributors, 2023) .
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Planteamiento del Problema
Durante las últimas décadas del siglo XX y las transcurridas del siglo XXI, los cient́ıficos

de distintas disciplinas han modelado sistemas ecológicos (Adams, 2016), sociales y económi-
cos, considerando las recurrentes crisis ocurridas en estos ámbitos.

Un sistema ecológico, contiene distintas comunidades ecológicas, y se caracteriza por la co-
existencia persistente de numerosos tipos de especies (entidades), las que a su vez interactúan
mediante múltiples mecanismos (procesos biológicos). Por esto, las Redes de Reacciones, len-
guaje de representación estándar en la bioloǵıa de sistemas, son precisas para el modelamiento
de los procesos que ocurren en este tipo de sistemas (y sus subsistemas). En particular, sucede
en comunidades ecológicas que su persistencia en el tiempo depende de la autoproducción de
su propia estructura, concepto que desde la bioloǵıa de sistemas se entiende como autopo-
iesis, y que ha sido modelado desde la Teoŕıa de Organización Qúımica (Heylighen et al., 2024).

Al explorar el concepto de autopoiesis de una comunidad ecológica, se puede analizar su
configuración y su evolución estructural mediante perturbaciones que complejizarán el mode-
lo, incluyendo nuevas interacciones o entidades no existentes inicialmente en el sistema, para
determinar la viabilidad de que dicho sistema sea sostenible en el tiempo.

Como se planteó en la Justificación del estudio, hasta el momento las investigaciones en
modelamiento ecológico basadas en Redes de Reacciones y la Teoŕıa de la Organización Qúımi-
ca se han centrado principalmente en comunidades ecológicas teóricas. En este contexto, la
presente investigación tiene como objetivo aplicar dicho enfoque al estudio de la sostenibili-
dad en comunidades ecológicas reales, contrastando los resultados del modelamiento con el
conocimiento emṕırico proporcionado por expertos en ecoloǵıa.

Por lo tanto, al desarrollar la cuantificación de la sostenibilidad de una comunidad ecológica
real ante un régimen con incertidumbres, con este abordaje será posible - sin que esta sea una
lista taxativa:

Proporcionar información sobre el comportamiento dinámico y las propiedades emer-
gentes y jerárquicas del sistema a partir de su estructura.

Explorar la relación entre el aspecto evolutivo y la complejidad, es decir, ¿cómo evolu-
cionan las organizaciones en relación con su complejidad?
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Hipótesis o pregunta de investigación y objetivos
Hipótesis:

Las comunidades ecológicas reales se comportan como redes de reacciones.

Objetivos
Objetivos Generales

1. Validar un modelo basado en redes de reacciones de una comunidad ecológica teórica
con interrelaciones complejas.

OE1 Construir un modelo de una comunidad ecológica espećıfica.
OE2 Utilizar herramientas de la Teoŕıa de la Organización Qúımica para analizar dinámi-

ca de una comunidad ecológica.

2. Modelar la sostenibilidad de una comunidad ecológica real.

OE3 Construir una red de reacciones que represente el sistema seleccionado.
OE4 Caracterizar la persistencia del sistema y contrastar los resultados con COT.
OE5 Identificar una suite de especies, reacciones y procesos que pueden ser considerados

como perturbaciones del sistema.
OE6 Analizar la respuesta del sistema ante las perturbaciones y proponer una métrica

para de sostenibilidad para el modelo.
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Parte I

Redes de reacciones en
comunidades ecológicas
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Introducción

Comprender la complejidad y dinámica de las interacciones biológicas al estudiar las co-
munidades ecológicas ha posicionado al modelamiento matemático como una herramienta
prioritaria. Por su parte, las Redes de Reacciones (RN) brindan un marco teórico sólido que
permite analizar y predecir el comportamiento de distintas comunidades ecológicas complejas
en este contexto. Como ejemplo de lo anterior, Veloz y Flores desarrollaron un modelo me-
cańıstico de interacción endosimbiótica para modelar interacciones endosimbióticas complejas
que integran distintos niveles organizacionales Veloz and Flores (2021b,a).

En esta parte de la investigación introduciremos el marco y formalización del modelamiento
utilizando RN y la Teoŕıa de Organización Qúımica (COT) para su aplicación en comunidades
ecológicas con interacciones complejas. En el Caṕıtulo 1, a continuación, presentamos defini-
ciones preliminares de las RN, COT y de ecoloǵıa de sistemas con interacciones complejas.
Además, ilustraremos ejemplos de apoyo a la interpretación de las definiciones. En el Caṕıtulo
2 presentamos el v́ınculo entre las RN y las comunidades ecológicas con interacciones comple-
jas. Con el objetivo de facilitar la comprensión de este v́ınculo, presentamos la construcción del
modelamiento de la comunidad ecológica compuesta por áfidos, endosimbiontes y parasitoides
(AEP) basándonos en la investigación de Oliver and Higashi (2019).
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Caṕıtulo 1

Modelamiento de comunidades
ecológicas

En este caṕıtulo presentamos las teoŕıas que permitirán estudiar el modelo que desarro-
llaremos, introduciendo las nociones del formalismo de Redes de Reacciones necesarias para
comprender los niveles de representación relacional, estequiométrico y dinámico; para poste-
riormente, introducir la Teoŕıa de la Organización Qúımica.

Las demostraciones de las definiciones matemáticas de este caṕıtulo pueden ser consulta-
das en las publicaciones de Feinberg (1979), Dittrich and di Fenizio (2007), Peter et al. (2010),
Peter and Dittrich (2011) y Peter et al. (2021), teoŕıa del orden en Stanley (1997), en el libro
de Birkhoff (1948) y en la tesis de maǵıster de Veloz González (2010).

El v́ınculo, a nivel teórico, entre las redes de reacciones y las comunidades ecológicas tiene
como precedente, por un lado, la publicación de Veloz and Razeto-Barry (2017a), que muestra
cómo las Redes de Reacciones pueden modelar interacciones ecológicas y utilizar la Teoŕıa de la
Organización Qúımica para formalizar conceptos ecológicos, como la invasión de especies, entre
otros y, por otro lado, la de Veloz and Razeto-Barry (2017b) que muestra cómo con Redes de
Reacciones y la Teoŕıa de la Organización Qúımica se pueden modelar interacciones ecológicas
y los cambios estructurales que ocurren en sistemas ecológicos, destacando la identificación
de módulos independientes y los cambios cualitativos en las Redes de Reacciones.
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1.1. Definiciones preliminares
1.1.1. Definiciones matemáticas
Redes de Reacciones

Definición 1.1. Red de Reacciones (RN): son sistemas de reacciones qúımicas que pueden
modelarse utilizando la teoŕıa de redes. Este enfoque implica representar las especies qúımi-
cas como nodos y las reacciones como aristas, permitiendo analizar dinámicas complejas a
través de herramientas matemáticas como matrices estequiométricas y sistemas de ecuaciones
diferenciales (Feinberg, 1979).

Si M = {s1, . . . , sm} es un conjunto finito de m especies reaccionando entre ellas de
acuerdo a un conjunto finito de R = {r1, . . . , rn} de n reacciones. Por lo tanto, una red de
reacciones, RN = ⟨M, R⟩ es definida como el par del conjunto de especies (M) y el conjunto
de reacciones (R).

Desde un punto de vista teórico, una red de reacciones es un grafo bipartito dirigido en el
que los nodos representan, respectivamente, moléculas y reglas de reacción, mientras que las
aristas están ponderadas por coeficientes estequiométricos. Además, cabe señalar que una red
de reacciones definida de este modo, con coeficientes estequiométricos enteros, es equivalente
a una red de Petri (Petri, 1962).

Ejemplo 1.1. Red de reacciones con cinco especies y ocho reacciones.

Existen cinco especies moleculares M = {agua, luz, planta, semilla, suelo}, que inter-
actúan según las siguientes reacciones (o reglas de reacción):

R =



r1 : ∅ k1−→ agua,

r2 : ∅ k2−→ luz,

r3 : agua + luz + semilla + suelo
k3−→ planta + suelo,

r4 : agua + luz + planta + suelo
k4−→ planta + suelo + semilla,

r5 : agua
k5−→ ∅

r6 : planta
k6−→ ∅

r7 : semilla + agua
k7−→ ∅

r8 : luz
k8−→ ∅



,

La representación gráfica de ⟨M, R⟩ de ejemplo se presenta en la Figura 1.1.
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Figura 1.1: Visualización de la Red de reacciones del ejemplo 1.1.

Después de definir y ejemplificar una RN, cabe destacar que algunas reacciones pueden
ocurrir con más frecuencia que otras. La especificación particular de la frecuencia en que
ocurren las reacciones en una RN se denomina proceso de reacción, o proceso. En el modela-
miento de RN se expresa como v y suele denominarse vector de proceso. Este concepto será
revisado posteriormente en más detalle para vincular la ocurrencia de las reacciones a un
nivel algebraico, con v como un vector, versus un nivel dinámico, con v como una función del
estado del sistema.

Propiedades relacionales

Existen propiedades de una red que se basan solamente en las relaciones de producción
entre las especies, sin considerar la cantidad de especies envueltas en cada reacción (también
conocido como estequiometŕıa).

En particular, para cada r ∈ R se puede definir supp(r) como el conjunto de reactantes
(soporte) y prod(r) como el conjunto de productos de r.

Es importante que ciertos conjuntos de especies X ⊆ M pueden cumplir propiedades
interesantes en el modo en que los reactantes y productos de sus reacciones se relacionan. Por
esto, se define RX como el conjunto de reacciones que se activan por X.
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Definición 1.2. Sea X ⊆ M. Se define RX como el conjunto de todas las reacciones r ∈ R
tal que supp(r) ∈ X.

Notar que ⟨X, RX⟩ es una sub-red de reacciones que representa la situación en que sólo
las especies en X están presentes.

Para simplificar las próximas definiciones, introducimos la siguiente notación

supp(RX) =
⋃

r∈RX

supp(r) ,

prod(RX) =
⋃

r∈RX

prod(r) .
(1.1)

Definición 1.3. Cerrado: X ⊆ M es cerrado si y solo si prod(RX) ⊆ X.

Notar que cuando X no es cerrado, su conjunto de reacciones activa nuevas especies s /∈ X
al sistema. Este mecanismo genera dos efectos en cascada:

Las reacciones en RX∪{s} no contenidas en RX pasan a estar disponibles.

Los nuevos procesos habilitados pueden incorporar especies adicionales s′ /∈ X ∪ {s}.

Cuando M es finito, este proceso recursivo continúa hasta alcanzar un conjunto X∗ donde
X∗ es cerrado, estableciendo aśı clausura estructural.

Definición 1.4. Sea X ⊆ M. Se define GCL(X) como el conjunto cerrado de cardinalidad
mı́nima que contiene a X.

Lema 1.1. Si M es finito, GCL(X) es único para todo X ⊆ M.

Desde ahora asumiremos que el conjunto M es finito.

Definición 1.5. Semi-automantención:

X ⊆ M es semi-automantenido si y solo si supp(RX) ⊆ prod(RX).

Análogamente al cierre estructural, la evolución de una red de reacciones tiende hacia
conjuntos estructuralmente semi-automantenidos. Cuando un conjunto X no cumple esta
propiedad, existen procesos donde los reactantes consumidos por sus reacciones no son re-
puestos mediante otras reacciones del mismo proceso.

Este desbalance genera un consumo neto de las especies no producidas, las cuales se agotan
progresivamente mediante los procesos activos en la red. La dinámica persiste hasta alcanzar
un conjunto X∗ donde

No se crean nuevas especies de las reacciones (clausura).
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Toda especie consumida por alguna reacción es producida por otra reacción (semi-
automantención).

Estos conjuntos, cerrados y semi-automantenidos se denominan semi-organizaciones, y
computacionalmente hablando son fáciles de obtener. Sin embargo, que un conjunto de espe-
cies sea semi-organización no asegura que la producción compense el consumo en una dinámica
de las especies en el tiempo.

Considere el ejemplo R = (a → b, 2b → a). En este caso X = {a, b} es cerrado y semi-
automantenido y por lo tanto una semi-organización, pero claramente no es posible sostener
este conjunto de especies en el tiempo, pues el consumo de a en la primera reacción no es
compensable con su producción en la segunda reacción, que utiliza 2b.

Propiedades Estequiométricas

Las propiedades estequiométricas precisan cómo se representan las reacciones y los pro-
cesos, y permiten expresar la productividad del sistema utilizando herramientas del álgebra
lineal.

Una reacción ri ∈ R corresponde a

ri = ai1s1 + . . . aimsm
ki−→ bi1s1 + . . . bimsm , (1.2)

donde aij , bij ∈ N0, para i = {1, . . . , n} y j = {1, . . . , m}. Notar que supp(ri) (prods(ri))
corresponde al conjunto de especies {sj} tal que aij > 0 (bij > 0).
Definición 1.6. Matriz estequiométrica: matriz que describe cuantitativamente los cam-
bios en las concentraciones de las especies debido a la ocurrencia de las reacciones.

Definiremos la matriz estequiométrica S = (sij) como la n × m matriz asociada a la
RN = ⟨M, R⟩.

sij = bij − aij , ∀i ∈ {1, . . . , n} y ∀j ∈ {1, . . . , m} , (1.3)
donde sij representa la cantidad neta de especies moleculares de un tipo si producida por la
reacción rn (sij siendo negativo si la molécula si es consumida en la reacción rn) del conjunto
M.

Por lo tanto, en general, la matriz estequiométrica toma la forma:

S =



s11 s12 · · · s1m

s21 s22 · · · s2m

...
... . . . ...

sn1 sn2 · · · snm


.
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A su vez, la matriz estequiométrica S se define como la diferencia de las matrices B y A
con

B =



b11 b12 · · · b1m

b21 b22 · · · b2m

...
... . . . ...

bn1 bn2 · · · bnm


y A =



a11 a12 · · · a1m

a21 a22 · · · a2m

...
... . . . ...

an1 an2 · · · anm


,

donde

n es el número total de especies en el sistema.

m es el número total de reacciones en el sistema.

sij ∈ N0 representa el número de moléculas de la especie si en la reacción rj .

aij ∈ N0 representa el número de moléculas de la especie si en la reacción rj en el lado
izquierdo de la ecuación de reacción (soporte).

bij ∈ N0 representa el número de moléculas de la especie si en la reacción rj en el lado
derecho de la ecuación de reacción (productos).

Ejemplo 1.2. Cálculo de una matriz estequiométrica en RN.

Consideraremos la ⟨M, R⟩ del ejemplo 1.1 para construir su matriz estequiométrica. To-
mamos como referencia a r3 y aplicamos la ecuación (1.3). De lo que, obtenemos:

s31 = b31 − a31 = 0 ,

s32 = b23 − a32 = 0 ,

s33 = b33 − a33 = −1 ,

s34 = b34 − a34 = 1 ,

s35 = b35 − a35 = 0 ,

s36 = b36 − a36 = 0 ,

s37 = b37 − a37 = −1 ,

s38 = b38 − a38 = 0 .

Desarrollamos de la misma forma para las restantes ri para obtener la matriz este-
quiométrica S del ejemplo 1.1,
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S =



1 0 0 0 0

0 1 0 0 0

−1 −1 −1 0 1

−1 −1 1 0 0

−1 0 0 0 0

0 0 0 0 −1

−1 0 −1 0 0

0 −1 0 0 0



. (1.4)

Definición 1.7. Estado: es un vector de coordenadas no negativas que corresponde al número
(o concentración) de especies sj presentes en la red, ∀j ∈ {1, 2 . . . , m}.

x = (x[1], x[2], . . . , x[m]) ∀x[j] ∈ Rm
≥0 . (1.5)

Definición 1.8. Imagen de la Matriz A: es el conjunto de todos los vectores que se
pueden obtener como combinación lineal de las columnas de la matriz A. Esto incluye todos
los posibles resultados de multiplicar A por cualquier vector de entrada.

Im(A) ≡ {y : y = Ax, x ∈ Rm
≥0} . (1.6)

Nota 1.1. En el contexto de sistemas de redes de reacciones, representa todas las combinacio-
nes posibles de cambios en las concentraciones de las especies qúımicas. Esta imagen describe
cómo las reacciones afectan las concentraciones de las especies en el sistema.

Definición 1.9. Proceso: es un vector que representa la ocurrencia de cada reacción ri en
la red de reacciones, ∀i ∈ {1, 2, . . . , n},

v = (v[1], v[2], . . . , v[n]) con v[i] ∈ Rn
≥0 . (1.7)

Definición 1.10. Flujo: es un vector que representa la velocidad o tasa de ocurrencia de la
reacción ri en la red, ∀i ∈ {1, 2, . . . , n}.

ki = (k1, . . . , kn) ∈ Rn
+ . (1.8)

Podemos observar que, para cualquier conjunto de especies X ⊆ M, un proceso v aplicado
a X sólo puede contener reacciones de RX .
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En general, podemos calcular el estado xv de la red de reacción asociado a un estado x y
a un proceso v mediante la siguiente ecuación:

xv = x + Sv∆t . (1.9)
donde x es el estado del sistema (cantidad o concentración de cada especie) en algún tiem-

po t0, v es el vector de proceso, donde cada componente v[i] indica cuánto ocurre la reacción
ri entre t0 y un tiempo futuro t1. Sv representa entonces el vector de producción de especies
generado por la aplicación de la matriz S sobre el proceso v, y xv representa el nuevo estado
del sistema en tiempo t1.

Esta formalización no solo permite la representación de la evolución temporal de las es-
pecies, como un cambio discreto en el estado del sistema debido a un proceso v, aplicando
la matriz estequiométrica S, sino que también simplifica la identificación de puntos fijos y
comportamientos dinámicos estables, lo que es fundamental para entender la sostenibilidad y
el automantenimiento de las especies persistentes dentro de la red.

Definición 1.11. Automantención: X ⊆ M es automantenido si y solo si existe v ∈ Rn
≥0

con v[i] > 0 para todo ri ∈ RX y v[i] = 0 para todo ri /∈ RX que cumple

xv[j] ≥ x[j], para todo sj ∈ X , (1.10)
o equivalentemente Sv ≥ 0.

Estudiando la Dinámica

Para determinar la dinámica de sistemas, consideramos la evolución del estado del sistema
en un intervalo de tiempo. La ecuación (1.9) describe cómo el estado del sistema en el tiempo
t1 se obtiene sumando al estado inicial x(t0) el efecto de las reacciones representadas por la
matriz estequiométrica S multiplicada por el vector de proceso v. Al considerar un intervalo
de tiempo infinitesimal, podemos expresar la variación del estado como ∆t = t1 − t0 y, al
dividir ambos lados de la ecuación por ∆t, obtenemos la tasa de cambio del estado, que se
define como

ẋ = x(t1) − x(t0)
∆t

(1.11)

Por lo tanto, cuando ∆t tiende a 0, la ecuación (1.9) se transforma en (1.12), donde
Sv representa el vector de producción que cuantifica la frecuencia de las reacciones en la
red, estableciendo aśı la relación entre la evolución temporal del estado del sistema y las
interacciones que ocurren en él.

Definición 1.12. Dinámica del sistema: describe la evolución temporal del estado del
sistema en una red de reacción, donde la velocidad de cambio del estado x está determinada
por la matriz estequiométrica S y el vector de proceso v, es decir, el vector de producción Sv,
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ẋ = Sv . (1.12)

En la dinámica del sistema, el vector v es una representación dinámica que captura cómo
las interacciones entre las especies y las constantes de velocidad determinan la evolución
temporal del sistema, por medio de la siguiente formalización:

v = k ◦ f(x) , (1.13)

donde k es el vector de flujo y f(x) es una función que describe cómo las tasas de reacción
dependen de las concentraciones de las especies en el estado x.

Por tanto, cada componente v[i] puede ser modelado mediante una función que depende
de las concentraciones de las especies y de las constantes de velocidad ki:

v[i] = ki ◦ fi(x) . (1.14)

Nota 1.2. La dependencia de v respecto de x se debe a que las velocidades de reacción
son funciones de las concentraciones de las especies, que determinan la cantidad de reactivos
disponibles para reaccionar y a que k influye en la rapidez con la que se produce el cambio en
las concentraciones de las especies.

El producto denotado por “◦” corresponde a un producto componente a componente,
también conocido como producto de Hadamard (Horn and Johnson, 1991). Este producto se
define entre dos vectores del mismo tamaño y genera un nuevo vector cuyas entradas son el
producto de las entradas correspondientes de los vectores originales:

v = (v[i]) = k ◦ f(x) =



k1f1(x)

k2f2(x)
...

knfn(x)


,

v[i] = ki · fi(x) con i = {1, 2, ..., n} .

Este tipo de producto es ampliamente utilizado en modelos de cinética de masas, donde
cada componente de v representa la velocidad de una reacción espećıfica, determinada por la
constante de velocidad ki y una función fi(x) que describe la dependencia de dicha reacción
respecto de las concentraciones de las especies involucradas.

Nota 1.3. Existe un vector de flujos positivo que garantiza el mantenimiento de las con-
centraciones de todas las especies del conjunto. Aśı, el núcleo positivo se sostiene de manera
estable sin intervención externa.
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Ejemplo 1.3. Simulación dinámica de una comunidad ecológica modelada por RN.

Para ejemplificar la dinámica de un sistema, utilizaremos el sistema de ecuaciones dife-
renciales ordinarias (EDOs) que describe la ecuación (1.12) y la representación dinámica de
v presentada en (1.13) aplicada a la RN 1.1, en consideración de la ley cinética de acción de
masas, obtenemos:

˙[agua] = k1 − k3[agua][luz][semilla][suelo] − k4[agua][luz][suelo][planta]
− k5[agua] − k7[agua][semilla] ,

˙[luz] = k2 − k3[agua][luz][semilla][suelo] − k4[agua][luz][suelo][planta]
− k8[luz] ,

˙[semilla] = − k3[agua][luz][semilla][suelo] + k4[agua][luz][suelo][planta]
− k7[agua][semilla] ,

˙[suelo] = 0 ,

˙[planta] = k3[agua][luz][semilla][suelo] − k6[planta] .

(1.15)

A partir del sistema de ecuaciones diferenciales ordinarias (ODEs) definido en (1.15), y
considerando un vector de flujo espećıfico k que representa valores plausibles para las tasas de
interacción en la red de reacciones ejemplificada en (1.1), procedimos a realizar una serie de
simulaciones dinámicas. Los parámetros utilizados en estas simulaciones, incluyendo el vector
de flujo y las condiciones iniciales, se detallan en el cuadro 1.1.

Con base en esta configuración, ejecutamos una bateŕıa de simulaciones bajo distintas
condiciones iniciales (C.I.), con el objetivo de observar la evolución temporal del sistema en
escenarios diversos. Cada simulación se presenta en el cuadro 1.2, donde se muestran las
trayectorias dinámicas correspondientes. Debajo de cada gráfica se indica expĺıcitamente la
condición inicial utilizada, acompañada de una interpretación cualitativa del estado inicial del
sistema. Este análisis permite visualizar cómo diferentes configuraciones de partida pueden
influir en el comportamiento dinámico global de una comunidad ecológica modelada.

Descripción Parámetro

Vector de flujo k = (1.0, 0.5, 0.5, 0.2, 0.5, 0.5, 0.1, 0.3)

Condiciones iniciales x(0) = (agua(0), luz(0), semilla(0), suelo(0), planta(0))

Cuadro 1.1: Parámetros utilizados para las simulaciones dinámicas de la RN en el ejemplo
1.1.
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Cuadro 1.2: Simulaciones dinámicas para distintas C.I.s del sistema de EDOs (1.15). Elabo-
ración propia en Python™, libreŕıa pyCOT (Veloz, 2025).

a) x(0) = (0, 0, 1, 1, 1).
C.I. sin presencia de agua ni luz.

b) x(0) = (1, 0, 1, 1, 1).
C.I. sin presencia de luz.

c) x(0) = (0, 1, 1, 1, 1).
C.I. sin presencia de agua.

d) x(0) = (1, 1, 1, 1, 1).
C.I. todas las especies presentes.

e) x(0) = (1, 1, 0, 1, 1).
C.I. sin presencia de semilla.

f) x(0) = (1, 1, 1, 1, 0)
C.I. sin presencia de planta.
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g) x(0) = (1, 1, 0, 1, 0)
C.I. sin presencia de semilla ni planta.

Para cada caso de C.I. en el cuadro 1.2 concluimos, en relación con la persistencia de las
especies en el largo plazo, que:

Cuadro 1.3: Resumen de conclusiones de las simulaciones dinámicas en el cuadro 1.2.

Condiciones iniciales a), b), c), d), e) y f):

Estado final = (agua, luz, semilla, suelo, planta)

Condición inicial g):

Estado final = (agua, luz, 0, suelo, 0),

El sistema colapsa a las especies con ingreso constante (agua, luz) y suelo, especie
que sola no activa ninguna reacción por lo que permanece constante, debido a
que tampoco se consume.

Definición 1.13. Formalización de la dinámica de concentraciones en sistemas reacción-
difusión:

La dinámica espacio-temporal de las concentraciones de las especies qúımicas (o ecológicas)
puede modelarse mediante una ecuación de tipo reacción-difusión. En su forma general para
cada especie ci(x, t), se expresa como:

∂ci(x, t)
∂t

= S · v(c(x, t)) + di
∂2ci(x, t)

∂x2 . (1.16)

En esta ecuación, cada uno de los términos representa un mecanismo fundamental que
rige la evolución del sistema. Donde:
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ci(x, t) es la concentración de la especie i-ésima en la posición espacial x ∈ Ω ⊆ Rn y
en el tiempo t ∈ R≥0.

∂ci(x, t)
∂t

es la derivada temporal de la concentración, que describe la tasa de cambio de
ci en el tiempo.

S es la matriz estequiométrica de dimensión m × r, donde m es el número de
especies y r el número de reacciones. Cada entrada Sij representa el cambio
neto en la especie i debido a la reacción j.

v(c(x, t)) es el vector de velocidades de reacción evaluado en las concentraciones locales
c(x, t) = (c1(x, t), . . . , cm(x, t)), que incorpora la dinámica no lineal del sistema
qúımico o ecológico, generalmente modelado mediante leyes de acción de masas
u otras cinéticas.

di es el coeficiente de difusión de la especie i, que mide su capacidad de dispersarse
en el espacio.

∂2ci(x, t)
∂x2 es el operador de Laplace aplicado a ci, que representa el flujo difusivo neto

bajo el supuesto de difusión isotrópica homogénea.

Este concepto corresponde a la combinación de la dinámica temporal de las concentra-
ciones de especies debido a reacciones qúımicas y el efecto de la difusión de las especies en
el espacio. Esta ecuación es fundamental para entender cómo las interacciones entre especies
y los efectos de su difusión influyen en la persistencia y el comportamiento a largo plazo
de los sistemas biológicos. Si bien la sostenibilidad ecológica puede desarrollarse en espacios
homogéneos, la inclusión del término de difusión resulta especialmente pertinente cuando se
modelan sistemas con heterogeneidad espacial, dispersión de organismos o gradientes ambien-
tales. En estos casos, los efectos espaciales pueden modular significativamente la estabilidad,
coexistencia y resiliencia de las especies, extendiendo el alcance del análisis más allá de los
modelos localmente acoplados. Por lo tanto, permite capturar tanto la dinámica local de las
interacciones (a través del término de reacción) como la propagación espacial de las especies
(a través del término de difusión), lo cual es relevante para modelar comunidades ecológicas
complejas con heterogeneidad espacial.

Definición 1.14. Persistencia: Se refiere a la capacidad de un conjunto de especies para
mantenerse en el sistema a lo largo del tiempo. Esta definición establece que un conjunto es
persistente si puede ser observado de manera continua en el tiempo, lo que implica que no se
extinguirá.

X ⊆ X es persistente si F (Xϵ, δ) > 0 para todo ϵ > 0 y δ > 0 , (1.17)
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donde

F (Xϵ, δ) = ĺım sup
j→∞

1
tj+1 − tj

∫ tj+1

tj

∫
Ω

{x ∈ Ω : c(x, t) ∈ Xϵ,δ} dx dt > 0 , (1.18)

y

X ⊆ X indica que estamos interesados en un grupo espećıfico de especies dentro del
sistema.

F (Xϵ, δ) es la frecuencia de ocurrencia, es decir, la medición de cuán a menudo las con-
centraciones de las especies en el conjunto x aparecen en el sistema a lo largo del
tiempo. En el detalle de la ecuación (1.18). Se define como el ĺımite superior de la
proporción de tiempo en el que las concentraciones de las especies están dentro
del vecindario definido por ϵ y δ.

ϵ > 0 representa un umbral positivo que se utiliza para definir un vecindario alrededor
de las concentraciones de las especies.

δ > 0 define un rango en el que se considera que las concentraciones de las especies son
relevantes para la persistencia.

¿Cómo se pueden utilizar las propiedades relacionales y estequiométricas para
comprender la dinámica del sistema?

En el contexto de las redes de reacción, la interconexión entre los distintos niveles de des-
cripción se establece a través de un marco que los integra; cada una de las descripciones aporta
una perspectiva única sobre el comportamiento del sistema. Por lo que, integra la abstrac-
ción, la dinámica y la representación estructural, permitiendo un análisis coherente y riguroso
del comportamiento de sistemas complejos. Este enfoque jerárquico, desde lo relacional a lo
dinámico, no solo proporciona una comprensión más profunda de las interacciones en el sis-
tema, sino que también permite la formulación de hipótesis y la realización de simulaciones
que pueden ser validadas experimentalmente.

Inicialmente, describimos las propiedades relacionales que refiere a la representación abs-
tracta de las interacciones entre especies, donde se utilizan grafos o matrices para ilustrar las
relaciones de producción y consumo. Este nivel permite identificar patrones y organizaciones
dentro del sistema sin entrar en detalles sobre las concentraciones o las tasas de reacción,
proporcionando una visión general de la estructura del sistema.

Luego incorporamos propiedades estequiométricas para cuantiticar relaciones de producti-
vidad colectivas para conjuntos de especies. Aqúı, la matriz estequiométrica S juega un papel
fundamental, ya que describe cómo las especies son consumidas y producidas en cada reac-
ción. Esta descripción permite establecer una base para el análisis de la dinámica del sistema,
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ya que proporciona la información necesaria para entender cómo las interacciones afectan las
concentraciones de las especies a lo largo del tiempo.

En último lugar, presentamos la Descripción Cinética que se relaciona con la dinámica
temporal del sistema, donde se modelan las tasas de cambio de las concentraciones de las
especies mediante ecuaciones diferenciales. La ecuación de dinámica de sistemas (1.12) que
conecta estos niveles al relacionar la tasa de cambio del estado del sistema (ẋ) con la matriz
estequiométrica S y el vector de proceso v, que contiene la información sobre las reacciones y
sus velocidades. Este nivel permite un análisis detallado de cómo las concentraciones cambian
en función del tiempo y de las interacciones que ocurren en el sistema.

Teoŕıa de Organizaciones Qúımicas

A continuación, desarrollamos cómo es el v́ınculo entre la relación Estructural de la red
de reacciones y su Dinámica, para lo cual introducimos los conceptos principales de la Teoŕıa
de la Organización Qúımica.

La Teoŕıa de Organización Qúımica (COT)(Dittrich and di Fenizio, 2007) se fundamenta
en el concepto de que las interacciones entre especies qúımicas pueden ser descritas mediante
redes de reacciones, donde cada reacción representa un proceso de transformación de reactivos
en productos. Esta teoŕıa se formaliza a través de un conjunto de definiciones y ecuaciones
que describen cómo las especies se organizan y mantienen en equilibrio dentro de un sistema.
Además, se centra en la identificación de configuraciones persistentes de especies que pueden
coexistir y ser sostenidas por las reacciones de la red (organizaciones). Estas configuraciones
persistentes de especies se caracterizan por la condición de equilibrio caracterizada por el
concepto de automantención.

En la ecuación (1.10), la producción neta de cada especie es mayor o igual a cero, lo que
implica que las tasas de producción y consumo permiten que las especies en la organización
coexistan y eventualmente se incrementen.

En este contexto, COT se ocupa de las subredes de reacciones (X, RX) contenidas en la
red ⟨M, R⟩ que son cerradas y automantenidas. A estas subredes se les llama organización
qúımica.

Nota 1.4. Una organización representa una combinación de especies moleculares que puede
persistir en el largo plazo. Un conjunto de moléculas no cerrado o no automantenido no exis-
tiŕıa a largo plazo y no existiŕıa durante mucho tiempo, porque aparecerán nuevas moléculas
y desaparecerán otras, respectivamente.

Para formalizar la intuición anterior, requerimos introducir algunos conceptos que vinculan
el estado del sistema con las especies cuya concentración es estrictamente positiva, es decir,
aquello que está y define el subespacio del espacio de fase donde se ubica el estado del sistema.
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Definición 1.15. Abstracción: es la representación simplificada de un estado del sistema,
donde se identifican las especies presentes y se ignoran los detalles espećıficos de sus cantida-
des.

Sea ẋ = f(x) un sistema dinámico y x un estado en X. Una abstracción ϕ de un estado
x(t) se define como el conjunto de especies con concentración mayor que un umbral Θ > 0 en
ese estado, y se denota como:

ϕ : X 7→ P(M), Θ > 0, ϕ(x) = {si | x[i] > Θ, i ∈ M} . (1.19)

Esta noción permite conectar la representación del sistema con su comportamiento dinámi-
co, ya que la abstracción proporciona una forma de identificar las instancias de un conjunto
de especies X en un estado dado. Aśı, la abstracción juega un papel crucial en la identificación
de organizaciones dentro de la red de reacción, facilitando el análisis de la estabilidad y la
dinámica del sistema.

Definición 1.16. Instancia: representación espećıfica de un conjunto de especies en un
estado particular del sistema. Una instancia se define como un estado x(t) que corresponde a
un conjunto de especies X si la abstracción de x(t) es igual a X.

x(t) es una instancia de X ⇐⇒ ϕ(x(t)) = X , (1.20)

donde ϕ(x(t)) es la función de abstracción que identifica las especies presentes en el estado x(t).

Este concepto es fundamental para el análisis de la dinámica de sistemas, ya que permite
identificar y estudiar las configuraciones espećıficas de especies que pueden ser observadas
en el tiempo. Al considerar las instancias, se pueden explorar las propiedades de persistencia
y automantenimiento de las organizaciones dentro de la red de reacción, facilitando aśı una
comprensión más profunda de su comportamiento dinámico.

Por consiguiente, la relación entre Estructura y Dinámica en el contexto de redes de reac-
ción es fundamental para comprender la dinámica y la persistencia de los sistemas biológicos y
qúımicos modelados a través de estas redes. Para clarificar esto, introduciremos las siguientes
definiciones.

Definición 1.17. Punto fijo: x∗ es un punto fijo de un sistema dinámico y se define como
un vector de concentraciones de especies en el equilibrio.

ẋ = f(x) = 0 , (1.21)

donde ẋ es el vector de tasas de cambio de las concentraciones de las especies y f(x) es una
función que describe la dinámica del sistema. En este contexto, x∗ representa un estado de
equilibrio. En consecuencia, un punto fijo se define como un estado del sistema en el cual las
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concentraciones de las especies no cambian con el tiempo, es decir, es un estado de equilibrio
donde la tasa de producción y consumo de cada especie se iguala.

La conexión entre estos conceptos radica en que las instancias de organizaciones pueden
ser vistas como configuraciones que, bajo ciertas condiciones, pueden alcanzar un punto fijo.
Es decir, una instancia de organización puede ser un punto fijo si las reacciones que la com-
ponen permiten que las tasas de cambio de las especies involucradas persistan en el tiempo.

Teorema 1.1. Si x es un punto fijo del sistema de ecuaciones diferenciales ordinarias 1.12,
es decir, Sv(x, k) = 0, entonces la abstracción ϕ(x) es una organización.

Los puntos fijos implican las instancias dinámicamente estables más simples de un sis-
tema de reacción, y son cruciales para determinar las caracteŕısticas más importantes de la
dinámica de un sistema. Aśı, el Teorema 1.1 proporciona un v́ınculo entre el comportamiento
a largo plazo de un sistema de reacción y su red de reacciones subyacente. En palabras senci-
llas, demuestra que una condición necesaria para ser un punto fijo a nivel cinético es ser una
organización a nivel estequiométrico (y por tanto una semi-organización a nivel relacional).
Además, el Teorema 1.1 se extiende a otros comportamientos asintóticos estables como órbi-
tas periódicas y ciclos ĺımite. Además de estos resultados, se han explorado las condiciones
necesarias para la existencia de vectores de flujo adecuados, y se han presentado estudios
algoŕıtmicos relativos al cálculo de las organizaciones de una RN.

Dichos resultados han sido recientemente generalizados a sistemas de reacción difusión Pe-
ter et al. (2021), utilizando el marco descrito. Sin embargo, no nos expandiremos en este tema
pues se escapa de los ĺımites de este trabajo.

En conclusión, los términos y definiciones presentados anteriormente son fundamentales
para establecer un marco matemático que permite concluir que la relación entre la estructura
de la red de reacciones y el comportamiento dinámico del sistema se convierte en una herra-
mienta poderosa para el análisis de la sostenibilidad en sistemas ecológicos. Este enfoque se
alinea con los trabajos de Stephan Peter y Peter Dittrich, quienes han explorado la teoŕıa de
organizaciones qúımicas y su aplicación en la dinámica de sistemas complejos (Dittrich and
di Fenizio, 2007; Peter, 2008). La identificación de organizaciones en redes de reacciones pro-
porciona una base sólida para el modelado y la predicción de comportamientos a largo plazo
en sistemas ecológicos, lo que es esencial para el desarrollo de estrategias de sostenibilidad
efectivas.

1.1.2. Ejemplo de cálculo de organizaciones de una red de reacciones

Para calcular las organizaciones de la red de reacciones del ejemplo 1.1, primero debemos
identificar los conjuntos cerrados de especies que pueden ser automantenidos en equilibrio a

37



través de las reacciones disponibles. En este contexto, una organización se refiere a un conjunto
de especies que pueden coexistir y ser sostenidas por las reacciones de la red.

Definición 1.18. Catalizador: es una especie que participa en alguna ri de la red de reac-
ciones de tal manera que se consume y se produce con un balance estequiométrico neto igual a
cero. Sin embargo, de no estar presente como reactivo, dicha reacción no puede ser activada.

En particular, en el ejemplo 1.1 encontramos dos catalizadores (o especies catalizadoras)
suelo y planta. Por un lado, en r3 y r4 la especie suelo es un catalizador, ya que es un reactivo
y, a su vez, un producto con la misma estequiometŕıa. Además, sin su presencia, las reacciones
no pueden ser activadas. Por otro lado, en r4 la especie planta es catalizadora.

Nota 1.5. Una especie sj donde j ∈ {1, 2, ..., m} según la ecuación (1.2) puede ser, indistin-
tamente, catalizadora en una reacción o reactivo (o producto) en otra reacción.

Caracterización de especies y reacciones de la RN.

Las especies involucradas en la red son:

Especies iniciales: agua, luz, semilla, suelo, planta.

Especies generadas: planta, semilla.

Especies catalizadoras: suelo, planta.

Análisis de las Reacciones

Reacciones de Producción

r1: Introduce agua al sistema.

r2: Introduce luz al sistema.

r3: Consume agua, luz, semilla y suelo; produce planta y suelo.

r4: Consume agua, luz, planta y suelo; produce planta, suelo y semilla.

Reacciones de Consumo

r5: Consume agua. Representa la salida del sistema de esta especie.

r6: Consume planta. Representa la muerte de esta especie.

r7: Consume semilla y agua. Representa la muerte de la semilla por exceso de agua.

r8: Consume luz. Representa la disipación en el sistema de esta especie.
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Determinación de Organizaciones

Para determinar las organizaciones (O), debemos buscar conjuntos cerrados estructural-
mente de especies (Ci) que puedan ser automantenidos en equilibrio. Esto implica que el
consumo de las especies de Ci por las reacciones que estas especies activan, es decir, RCi debe
asegurar que se produzcan todas las especies en Ci.

Determinación de los subconjuntos cerrados estructuralmente
Los conjuntos cerrados estructuralmente identificados son los siguientes:

1. C0 = {∅} , es cerrado trivialmente porque no contiene especies y no puede generar
nuevas.

2. C1 = {agua, luz} , es cerrado porque las reacciones que activan no generan ninguna
nueva especie.

Detalle de determinación de si el conjunto es cerrado estructuralmente:
• Reacciones que activan:r1, r2, r5 y r8
• Productos que generan: {agua, luz}

Por lo tanto, el conjunto {luz, agua} es cerrado porque todos los productos de las
reacciones activas que activan están contenidos en el mismo conjunto.

Para los demás conjuntos solo presentamos los resultados. Sin embargo, es preciso
realizar el mismo análisis.

3. C2 = {agua, luz, suelo} ,

4. C3 = {planta, agua, luz} ,

5. C4 = {semilla, agua, luz} ,

6. C5 = {planta, agua, luz, semilla} ,

7. C6 = {agua, luz, planta, semilla, suelo} .

Verificación de automantenimiento
Los conjuntos automantenidos, entre el conjunto de cerrados estructuralmente, son:

1. C0 = {∅} es automantenido, trivialmente, porque no contiene ninguna especie.

2. C1 = {agua, luz} ,

Se encontró un vector de flujo v que satisface la condición de automantención.
Es decir, v = (1, 1, 0, 0, 1, 0, 0, 1) tal que, Sv ≥ 0 para todas las especies en el
conjunto).
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Para los demás conjuntos solo presentamos los resultados. Sin embargo, es preciso rea-
lizar el mismo análisis.

3. C2 = {agua, luz, suelo} ,

4. C6 = {agua, luz, planta, semilla, suelo} .

Organizaciones Identificadas

Las organizaciones qúımicas de la red son:

O0 = {∅}

O1 = {agua, luz}

O2 = {agua, luz, suelo}

O3 = {agua, luz, semilla, planta, suelo}

1.1.3. Teoŕıa del orden y Representación visual de las Organizaciones
La teoŕıa del orden es un área fundamental en la combinatoria y la matemática discreta

que se ocupa de la relación de orden entre elementos de un conjunto. Esta teoŕıa proporcio-
na un marco conceptual para entender cómo se pueden organizar jerárquicamente diferentes
estructuras, lo que resulta esencial en diversas aplicaciones, entre éstas la biomatemática.

Las siguientes definiciones se enmarcan en la teoŕıa del orden (Stanley, 1997) y permiten
visualizar, de forma simple, cómo se ordenan jerárquicamente las organizaciones. A través
de estas definiciones, se busca establecer una base sólida que facilite la comprensión de las
interacciones y relaciones entre los elementos en un sistema, lo cual es crucial para el análisis
y modelado de fenómenos biológicos complejos.

En este contexto, se explorarán conceptos claves como conjuntos parcialmente ordenados,
ret́ıculos y diagrama de Hasse que son fundamentales para el desarrollo de modelos matemáti-
cos que reflejan la estructura jerárquica de las organizaciones biológicas. La comprensión de
estas relaciones no solo es teórica, sino que también tiene implicaciones prácticas en la opti-
mización de procesos biológicos, investigación biomédica, entre otras tantas.

Definición 1.19. Conjunto parcialmente ordenado o poset: es un par (P, ≤) donde P
es un conjunto y ≤ es una relación de orden parcial en P , es decir, una relación binaria que
cumple las siguientes propiedades para todo a, b, c ∈ P :

1. Reflexividad: a ≤ a.

2. Antisimetŕıa: Si a ≤ b y b ≤ a, entonces a = b.
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3. Transitividad: Si a ≤ b y b ≤ c, entonces a ≤ c.

Definición 1.20. Diagrama de Hasse: en la teoŕıa del orden, es un tipo de diagrama
matemático utilizado para representar un conjunto parcialmente ordenado finito, en forma de
un dibujo de su reducción transitiva.

Concretamente, para un conjunto parcialmente ordenado (S, ≤), se representa cada ele-
mento de S como un vértice en el plano y se dibuja un segmento de ĺınea o curva que va hacia
arriba desde un vértice x a otro vértice y siempre que y contenga a x (es decir, cuando x ̸= y,
x ≤ y y no existe un z distinto de x y y con x ≤ z ≤ y). Estas curvas pueden cruzarse entre
śı, pero no deben tocar ningún vértice salvo en sus extremos. Dicho diagrama, con vértices
etiquetados, determina de manera única su orden parcial.

Ejemplo 1.4. Ejemplo del Diagrama de Hasse.

Considerando las organizaciones en (1.1.2) y la definición 1.20 generamos el Diagrama de
Hasse correspondiente a la RN de ejemplo 1.1.

O0 = ∅

O1 = {agua, luz}

O2 = {agua, luz, suelo}

M = O3 = {agua, luz, semilla, planta, suelo}

Figura 1.2: Diagrama de Hasse de las organizaciones de la red de reacciones 1.1.

Nota 1.6. La Figura 1.2 muestra la relación de inclusión entre las organizaciones. Por un
lado, las flechas expĺıcitas (hacia arriba) representan la relación de orden parcial por conten-
ción de conjuntos y por otro lado, la diferencia de extensión entre la fecha que va desde O1 a
O2 y la fecha que va de O2 a O3 se vincula con la diferencia de cardinalidad de los conjuntos
(complejidad).

La modelación por medio de redes de reacciones (RN) y la teoŕıa de organización qúımi-
ca (COT) implica una metodoloǵıa estructurada para estudiar sistemas complejos desde una
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perspectiva formal y jerárquica. En primer lugar, se define un universo de especies e inter-
acciones en forma de red de reacciones. Luego, se identifican subconjuntos de especies que
cumplen con condiciones estructurales (clausura) y funcionales (automantenimiento), deno-
minados organizaciones.

Estas organizaciones se relacionan jerárquicamente mediante inclusiones mı́nimas, las que
se representan en un diagrama de Hasse. Finalmente, cada organización corresponde a un
subconjunto del espacio de estados que puede ser asociado a dinámicas sostenibles, como
puntos fijos, ciclos ĺımite o atractores. Este enfoque permite transitar de una descripción
puramente estructural a una comprensión funcional del comportamiento sistémico.

Red de
Reacciones

⟨M, R⟩
Especies y
Reacciones.

Diagrama
de Hasse

O
Estructuras cerradas
y automantenidas.

Reǵımenes
dinámicos

Puntos fijos,
ciclos ĺımite,
atractores.

Identificación de
organizaciones

Correspondencia con
dinámicas estables

Figura 1.3: Flujo conceptual desde la RN hacia la dinámica sistémica usando COT.

Este tipo de mapeo, que transcurre desde la estructura de una red de reacciones hacia
su comportamiento dinámico, representa uno de los principales beneficios de trabajar con
COT. Permite una comprensión jerárquica y computacionalmente accesible del sistema, sin
necesidad de resolver expĺıcitamente las ecuaciones diferenciales que gobiernan su dinámica.
Haciendo posible la identificación anticipada de qué subconjuntos de especies tienen el po-
tencial de sostenerse en el tiempo, orientar simulaciones numéricas con mayor eficiencia y
analizar de forma formal fenómenos como resiliencia, estabilidad o emergencia de comporta-
mientos colectivos.
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1.2. Construcción de modelo de una comunidad ecológica teóri-
ca con RN+COT

La presente investigación tiene por objetivo desarrollar un modelo de la sostenibilidad en
comunidades ecológicas utilizando redes de reacciones. De esta forma, explorar el concepto de
autopoiesis para caracterizar su configuración y evolución estructural desde perturbaciones
que complejizan el modelo, incluyendo nuevos procesos o entidades no existentes inicialmente
en la red de reacciones.

La propuesta para esta modelación es la utilización de Redes de Reacciones, las cua-
les describirán las interacciones que se realizan en estos sistemas. Complementariamente, el
modelo será analizado estructuralmente utilizando la Teoŕıa de Organización Qúımica, de for-
ma cualitativa con ecuaciones diferenciales ordinarias considerando coeficientes constantes y,
posteriormente, parámetros estocásticos, que permitirán estudiar la evolución estructural del
sistema por medio de la realización de perturbaciones. Finalmente, se procederá a efectuar
simulaciones numéricas en distintos escenarios. La mayor parte de esta investigación considera
el desarrollo de la libreŕıa PyCOT (Veloz, 2025) del lenguaje de programación Python™.

Para proponer un modelo que describa la evolución estructural de la comunidad ecológica,
realizamos la revisión bibliográfica de publicaciones que consideran la modelación tradicional
de redes tróficas, para aśı generar una narrativa ecológica de la fenomenoloǵıa que sustente
las hipótesis que describen el comportamiento de este tipo de redes. Asimismo, literatura
relacionada con Redes de Reacciones (RN), la Teoŕıa de Organización Qúımica (COT) y sus
aplicaciones en comunidades y sistemas ecológicos.

Primero, desarrollaremos un modelo para una comunidad ecológica, en la que se presen-
tan interacciones complejas teóricas, para validar el potencial de RN+COT como lenguaje de
modelación.

Para complementar el primer modelo estudiamos, espećıficamente, las aplicaciones de
RN+COT realizadas teóricamente por Veloz and Flores (2021b) y Veloz and Flores (2021a) en
la comunidad ecológica con interacciones complejas reales que investigaron Oliver and Higashi
(2019), investigación basada en interacciones entre áfidos (Acyrthosiphon pisum), parasitoides
(Aphidius ervi) y endosimbiontes (Hamiltonella defensa).

En segunda instancia, desarrollamos un modelo, considerando la validación de la primera
parte, mediante el análisis comparativo con la modelación tradicional de redes tróficas estu-
diada por Crego et al. (2016) en la comunidad ecológica espećıfica de la Isla Navarino, que
corresponde a una isla del archipiélago de Tierra del Fuego en el extremo sur de Chile entre
los océanos Paćıfico y Atlántico, para cuantificar la sostenibilidad de comunidades ecológicas.
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De igual manera, se realizará el análisis cualitativo de su evolución estructural; para ello,
se utilizará COT. Por tanto, se identificarán las organizaciones (conjunto de especies cerradas
estructuralmente y automantenidas), es decir, que son candidatas a permanecer estables en
estado estacionario.

Por último, se efectuarán simulaciones numéricas con ecuaciones diferenciales ordinarias;
para esto, usaremos módulos de la libreŕıa PyCOT (Veloz, 2025) con el fin de visualizar el
comportamiento descrito en el modelo y obtener gráficas que describan la evolución estruc-
tural relacionada. Además, utilizaremos parámetros estocásticos para describir gráficamente
diferentes perturbaciones en el sistema.

La figura 1.4 corresponde a una esquematización metodológica que resume y describe el
desarrollo de la investigación.

Figura 1.4: Esquema metodológico. Elaboración propia.

Esta investigación considera la modelación interdisciplinaria, por lo que consideramos,
por un lado, el marco de modelamiento matemático mediante la aproximación desde redes de
reacciones y, por otro lado, el modelamiento de las ciencias sociales mediante una narrativa
cient́ıfica. Ambas aproximaciones, en conjunto, permiten construir el modelo de la comunidad
ecológica.
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1.2.1. Definiciones ecológicas

En ecoloǵıa, una red de reacciones se puede interpretar como una representación matemáti-
ca de las interacciones entre múltiples componentes bióticos y abióticos de una comunidad
ecológica, estructurada formalmente como un conjunto de especies y reacciones. Aśı como
cada reacción describe transformaciones, flujos o transferencias entre especies, bajo leyes que
pueden derivarse de la cinética de masas o de principios ecológicos análogos. Esta formulación
permite integrar, de manera sistemática, la estructura del sistema (conectividad e intensidad
de las interacciones) con su dinámica (variación temporal y espacial), lo que resulta particu-
larmente útil para estudiar propiedades emergentes como la sostenibilidad, la resiliencia o la
persistencia a largo plazo (Gross et al., 2009).

Finalmente, en relación a las definiciones ecológicas de sistemas con interacciones com-
plejas, pueden profundizarse al consultar los art́ıculos de Begon et al. (1986), Vet and Dicke
(2002), y Levin (1998).

Diferencias entre modelos de poblaciones y comunidades

Las principales diferencias entre modelos de poblaciones y modelos de comunidades radi-
can en el nivel de organización biológica que abordan y en cómo representan las interacciones
entre los organismos. Ambos tipos de modelos son herramientas fundamentales en ecoloǵıa,
pero se enfocan en aspectos diferentes del estudio de los ecosistemas.

Mientras, por un lado, los modelos de poblaciones estudian dinámicas por medio de ecua-
ciones diferenciales a nivel de una sola especie o población espećıfica dentro de un área deter-
minada. Por lo que se caracterizan por el tamaño de la población, crecimiento poblacional,
interacciones intraespećıficas y factores medioambientales. Por otro lado, los modelos de co-
munidades (en los cuales se enfoca esta investigación) abordan interacciones entre múltiples
especies dentro de un ecosistema o comunidad biológica. En lugar de centrarse en una sola
especie, estos modelos analizan cómo las diferentes especies interactúan entre śı y cómo estas
interacciones afectan la estructura y dinámica de la comunidad, por medio de redes. Por lo
que se caracterizan por las interacciones interespećıficas, la estructura de la comunidad, la
persistencia de la comunidad y se describen principalmente por medio de redes tróficas. Las
diferencias más significativas se presentan en el cuadro 1.4.

Son conocidos los problemas para abordar la modelación en poblaciones y comunidades.
Sin embargo, en 2020, Veloz abrió una ĺınea de investigación teórica que generó muchas otras
ĺıneas y esta investigación se enfoca en comunidades o ecosistemas, enmarcándose en una ĺınea
particular de COT para comunidades ecológicas. Una de estas ĺıneas fue presentada concre-
tamente por Veloz and Ramirez en 2022.

En relación a esta ĺınea particular de COT, es importante remarcar que en ecoloǵıa de siste-
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Aspecto Modelos de Poblaciones Modelos de Comunidades

Nivel de orga-
nización

Una sola especie o población. Múltiples especies interactuando.

Enfoque prin-
cipal

Dinámica interna de una población. Interacciones entre especies y es-
tructura comunitaria.

Interacciones Intraespećıficas (dentro de la misma
especie).

Interespećıficas (entre diferentes es-
pecies).

Variables clave Tamaño poblacional, tasas de nata-
lidad/mortalidad.

Diversidad, abundancia relativa, re-
des tróficas.

Aplicaciones
t́ıpicas

Manejo de especies espećıficas. Conservación de ecosistemas y bio-
diversidad.

Cuadro 1.4: Comparación entre modelos de poblaciones y modelos de comunidades.

mas, las comunidades ecológicas y ecosistemas son conceptualizados como unidades dinámicas
compuestas por entidades bióticas y abióticas, cuyas interacciones determinan la estructura
y función del sistema.

Definición 1.21. Entidades bióticas: corresponden al conjunto de organismos vivos que ha-
bitan un ecosistema, incluyendo individuos, poblaciones y comunidades de productores , consu-
midores y descomponedores. Estas especies interactúan entre śı mediante relaciones ecológicas
como depredación, competencia, mutualismo y parasitismo, afectando directa o indirectamente
la dinámica del sistema (Begon et al., 2006).

Definición 1.22. Entidades abióticas: engloban los factores f́ısicos y qúımicos no vivos
que influyen en los procesos ecológicos, tales como la temperatura, la luz solar, el agua, el pH,
los nutrientes, la topograf́ıa y el tipo de suelo. Estos factores condicionan el desarrollo y la
distribución de las especies, aśı como los flujos de enerǵıa y materia dentro del ecosistema
(Chapin et al., 2011).

Nota 1.7. La distinción entre ambos tipos de componentes es fundamental para el modela-
miento matemático de ecosistemas, y por ende, de comunidades ecológicas, ya que permite
representar expĺıcitamente las fuentes de variabilidad interna (biótica) y externa (abiótica)
que influyen en la sostenibilidad del sistema.

Definición 1.23. Interacción: reacción entre una o más especies definidas para la RN.

Definición 1.24. Mecanismo: conjunto de actividades que subyacen a una interacción in-
volucrada en una reacción.
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Definición 1.25. Relación interespećıfica: interacción ecológica que ocurre entre indivi-
duos de diferentes especies dentro de una comunidad ecológica (Begon et al., 1986).

Definición 1.26. Sistema tritrófico: describe las interacciones ecológicas entre tres ni-
veles tróficos: una planta (productor), un herb́ıvoro (consumidor primario) y un carńıvoro
(consumidor secundario) que se alimenta del herb́ıvoro (Vet and Dicke, 2002).

Definición 1.27. Interacciones complejas: en comunidades ecológicas son interacciones
que emergen de la multiplicidad de v́ınculos contextuales entre especies, los cuales pueden
incluir competencia, depredación, mutualismo, facilitación y retroalimentaciones indirectas.

Nota 1.8. Estas interacciones generan dinámicas no triviales, como estabilidad multiescalar,
ciclos ĺımite o caos determinista, que no pueden ser entendidas plenamente mediante enfo-
ques reduccionistas. El modelamiento expĺıcito de tales relaciones, mediante estructuras como
redes de reacciones o sistemas dinámicos acoplados, es esencial para capturar la naturaleza
emergente y adaptativa de los ecosistemas (Levin, 1998).

1.2.2. Modelamiento matemático de interacciones ecológicas
En relación al modelamiento matemático, en redes de reacciones podemos describir inter-

acciones de un sistema por medio de sistemas de reacciones qúımicas que pueden modelarse
utilizando la teoŕıa de redes. Este enfoque implica representar las especies qúımicas como
nodos y las reacciones como aristas, permitiendo analizar dinámicas complejas a través de
herramientas matemáticas como matrices estequiométricas y sistemas de ecuaciones diferen-
ciales (Feinberg, 1979).

En particular, en comunidades ecológicas se utiliza la modelación de redes tróficas, que
es una de las aproximaciones principales de la ecoloǵıa actualmente (Pringle and Hutchinson,
2020). Sin embargo, este tipo de modelación presenta una alta complejidad y baja fidelidad de
los resultados debido a que los datos utilizados para crearlas son deficientes y las interacciones
que se pueden considerar están restringidas sólo a dos especies biológicas. Al utilizar RN
podemos describir fácilmente las interacciones tradicionales de la modelación de redes tróficas.

Cuadro 1.5: Mecanismos ecológicos t́ıpicos y su traducción al lenguaje de reacciones utilizado
en RN.

Mecanismo ecológico Reacción en redes de reacciones

Nacimiento especie → 2especie

Muerte 2especie → especie

Depredación presa + depredador → 2depredador
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Mecanismo ecológico Reacción en redes de reacciones

Parasitismo (infestación) parásito + hospedador → parásito + hospedadorinfestado

Parasitismo (Muerte de hos-
pedador)

hospedadorinfestado → parásito

Comensalismo hospedador + huésped → hospedador + 2huésped

Amensalismo huésped + hospedador → huésped

Mutualismo cooperador1 + cooperador2 → 2cooperador1 + 2cooperador2

Competencia competidor1 + recurso → 2competidor1

competidor2 + recurso → 2competidor2

1.2.3. Integración interdisciplinaria
En relación al modelamiento de las ciencias sociales, una de las herramientas utilizadas es

la generación de una narrativa cient́ıfica. Una narrativa cient́ıfica se define como un enfoque
que integra el rigor metodológico y epistemológico propio de la ciencia con una estructura
narrativa que permite comunicar los resultados de manera accesible y comprensible. Este
enfoque busca no solo informar sobre descubrimientos y teoŕıas cient́ıficas, sino también con-
textualizarlos y presentarlos de forma que sean relevantes y significativos para un público
más amplio, incluyendo aquellos fuera del ámbito académico (Andes, 2024). Con base en esta
definición, espećıficamente aplicada al contexto de la presente investigación, extenderemos su
aplicación para realizar la contextualización de las especies e interacciones que se desarrollan
en comunidades ecológicas como narrativa ecológica.

Espećıficamente, esta narrativa ecológica le dará sustento a las hipótesis que considerare-
mos en la construcción del modelo matemático a generar. Mediante una narrativa ecológica es
posible construir reacciones de la red que consideren múltiples interacciones entre dos o más
especies e inclusive considerar especies que no pueden ser contempladas en la modelación de
redes tróficas.

A continuación, desarrollamos un ejemplo ilustrativo que permite concretar la propues-
ta metodológica descrita previamente, integrando el enfoque de RN+COT en la modelación
de una comunidad ecológica teórica. Este ejemplo surge a partir de una narrativa ecológica
construida con base en interacciones biológicas posibles entre especies, lo que permite formu-
lar hipótesis concretas sobre su dinámica. Aśı, se modelan procesos ecológicos clásicos como
depredación, competencia o parasitismo, y se exploran las configuraciones estructurales que
emergen del sistema bajo distintos escenarios de perturbación. El objetivo de este ejemplo es
validar el potencial de RN+COT como lenguaje de modelación para representar la evolución
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estructural de comunidades ecológicas complejas y, con ello, avanzar en la comprensión de su
sostenibilidad.

Ejemplo 1.5. Construcción de modelo de una comunidad ecológica a partir de una
de narrativa ecológica y la creación de su red de reacciones.

Al respecto del modelamiento de comunidades ecológicas teóricas para concretar, utiliza-
remos el ejemplo 1.1. Primero, describiremos la narrativa ecológica de dicha comunidad y,
posteriormente, analizaremos la narrativa ecológica para generar hipótesis que sustenten la
generación de la red de reacciones que caracterice a la comunidad.

Descripción de la narrativa ecológica

“Las plantas y su persistencia”:
En una comunidad ecológica (de juguete), que modelaremos mediante RN, el agua
ingresa por distintas v́ıas, que principalmente se relacionan con el ciclo del agua. A
su vez, las radiaciones electromagnéticas que emite el sol ingresan constantemente
como luz. En esta comunidad ecológica, el suelo se representa como un sustrato
abiótico que contiene nutrientes disponibles, sobre el cual se disponen semillas de
plantas que, al combinarse adecuadamente con agua y luz, germinan para producir
una planta. La propagación de las plantas ocurre mediante la dispersión de semillas
hacia el suelo. Parte del agua que ingresa al sistema no es aprovechada ni por las
semillas ni por las plantas. Después de un tiempo, hay plantas que cumplen su
ciclo de vida y mueren. Hay semillas que no logran las condiciones óptimas de
germinación, por lo que no generan plantas y mueren. Parte de la luz que ingresa
al sistema no es aprovechada ni por las semillas ni por las plantas.

Generación de hipótesis a partir de la narrativa ecológica

Análisis de hipótesis sobre “Las plantas y su persistencia”:
En una comunidad ecológica (de juguete), que modelaremos mediante RN, el agua
ingresa por distintas v́ıas (Hipótesis 1), que principalmente se relacionan con el
ciclo del agua. A su vez, las radiaciones electromagnéticas que emite el sol ingresan
constantemente como luz (Hipótesis 2). En esta comunidad ecológica, el suelo
está compuesto por material inerte que contiene nutrientes, en el que se dispone de
semillas de plantas, que al combinarse adecuadamente con agua y luz, germinan
para producir una planta (Hipótesis 3). La forma de propagación que tienen las
plantas se realiza por la dispersión de semillas al suelo (Hipótesis 4). Parte del
agua que ingresa al sistema no es aprovechada ni por las semillas ni por las plantas
(Hipótesis 5). Después de un tiempo, hay plantas que cumplen su ciclo de vida
y mueren (Hipótesis 6). Hay semillas que no logran las condiciones óptimas de
germinación, por lo que no generan plantas y mueren (Hipótesis 7). Parte de la
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luz que ingresa al sistema no es aprovechada ni por las semillas ni por las plantas
(Hipótesis 8).

1.2.4. Ejemplo de modelamiento de una comunidad ecológica con redes de
reacciones

En esta sección elaboramos un modelo de red de reacciones para la comunidad ecológi-
ca descrita en el ejemplo 1.1. Del análisis de la narrativa ecológica presentamos las especies
identificadas, en el cuadro 1.6, y las interrelaciones definidas, en el cuadro 1.7. Las que incor-
poraremos en el marco de modelación con redes de reacciones.

Descripción de las especies

Cuadro 1.6: Nomenclatura utilizada en el ejemplo 1.1.

Entidad Descripción

agua Molécula qúımica compuesta por dos átomos de hidrógeno y uno de ox́ıgeno
(H2O) unidos por un enlace covalente.

luz Conjunto de radiaciones electromagnéticas emitidas por el sol.

planta Organismo pluricelular vegetal compuesto principalmente de celulosa. Para el
ejemplo, consideraremos del tipo fotosintético.

semilla Parte de la planta que se genera en la etapa de maduración, mediante la cual se
produce su propagación.

suelo Parte superficial de la corteza terrestre, que contiene los nutrientes necesarios
para ser sustrato de organismos vegetales.

Descripción de las interacciones

Cuadro 1.7: Mecanismos ecológicos definibles para el ejemplo 1.1.

Mecanismo Ejemplo

Ingreso de agua al sistema r1 : ∅ → agua

Ingreso de luz al sistema r2 : ∅ → luz

Propagación de planta r3 : agua + luz + semilla + suelo → planta + suelo

Maduración de planta r4 : agua + luz + planta + suelo → planta + suelo + semilla

Salida de agua del sistema r5 : agua → ∅
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Mecanismo Ejemplo

Muerte natural de planta r6 : planta → ∅

Muerte natural de semilla
por exceso de agua

r7 : semilla + agua → ∅

Pérdida de luz en el siste-
ma, (no la capta planta ni
semilla)

r8 : luz → ∅

En conclusión, la modelación con RN frente a la modelación de redes tróficas expresa un
potencial, debido a que considerar este tipo de interacciones ampĺıa la cantidad de especies
que se pueden incorporar en cada una de las interacciones, de manera que el análisis que se
realiza, comparativamente, es más cercano a la realidad.
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Caṕıtulo 2

Modelamiento de interacciones
complejas: Interacción áfidos,
parasitoides y endosimbiontes en
plantas.

Este caṕıtulo presenta una formalización matemática de una comunidad ecológica inte-
grada por áfidos, parasitoides y endosimbiontes en plantas, utilizando una Red de Reacciones
(RN AEP ). Este enfoque facilita la simulación y análisis del sistema, alineado con el objeti-
vo general 1 de esta investigación. La representación mediante una red de reacciones permite
identificar módulos funcionales y patrones estructurales derivados de las interacciones comple-
jas entre especies que comparten recursos, se parasitan y establecen asociaciones simbióticas.

Esta propuesta se sustenta en investigaciones previas que han aplicado Redes de Reac-
ciones para modelar interacciones ecológicas complejas, como las relaciones endosimbióticas.
Estudios previos han demostrado que este enfoque permite integrar procesos bioqúımicos,
proliferación celular y mecanismos de regulación en múltiples escalas, evidenciando la rele-
vancia del enfoque multiescalar para comprender la estabilidad y dinámica emergente de las
interacciones simbióticas Veloz and Flores (2021a,b).

Además, este caṕıtulo explora el rol funcional de los endosimbiontes en la regulación de las
interacciones áfido-parasitoide, permitiendo evaluar cómo las redes de interacción se adaptan
a perturbaciones ecológicas, como la introducción de especies o el cambio ambiental. El for-
malismo de redes de reacciones se revela como una herramienta eficaz para modelar sistemas
ecológicos multiescalares y dinámicos.

En las secciones 2.3 y 2.4, se aborda la dinámica del sistema áfido–endosimbionte–parasitoide
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mediante dos enfoques complementarios. Realizamos un análisis anaĺıtico del sistema de ecua-
ciones diferenciales ordinarias asociado a la red de reacciones RN AEP , y simulaciones
numéricas que permiten explorar su comportamiento en condiciones controladas y pertur-
badas. La aproximación anaĺıtica, desarrollada por medio de casos, permite identificar con-
diciones de equilibrio y comportamientos ĺımite del sistema, mientras que la aproximación
numérica ofrece una herramienta flexible para evaluar su evolución temporal frente a distintos
escenarios ecológicos. En consecuencia, se busca comprender tanto la estructura matemática
subyacente como las trayectorias dinámicas emergentes de la comunidad ecológica modelada,
aportando una visión integral de los mecanismos que regulan su estabilidad y resiliencia.

2.1. Definiciones:

A continuación, se presentan definiciones de la ecoloǵıa que permitirán una comprensión
más detallada del modelo desarrollado para la comunidad ecológica estudiada y los distintos
mecanismos que se llevan a cabo en ella.

Definición 2.1. Áfidos fitófagos: pequeños insectos chupadores de savia de plantas, perte-
necientes al orden Hemiptera, suborden Sternorrhyncha (Blackman and Eastop, 2000).

Definición 2.2. Partenogénesis: forma de reproducción asexual en la que un nuevo indi-
viduo se desarrolla a partir de un óvulo no fecundado (Normark, 2003).

Definición 2.3. Parasitoide: organismo que vive a expensas de otro organismo huésped, al
que eventualmente mata para completar su desarrollo (Ebenhard, 1990).

Nota 2.1. Caracteŕısticas principales de los parasitoides:

1. Dependencia del hospedador: los parasitoides necesitan un hospedador para comple-
tar su desarrollo, pero su relación no es mutualista ni simplemente parasitaria.

2. Muerte del hospedador: aunque inicialmente no matan al hospedador, eventualmente
lo consumen o lo debilitan hasta causarle la muerte.

3. Especificidad: muchos parasitoides tienen una alta especificidad en cuanto a su hos-
pedador, atacando solo ciertas especies o grupos de organismos.

4. Ciclo de vida: generalmente, las larvas del parasitoide son las que dependen del hos-
pedador, mientras que los adultos suelen ser libres e independientes.

Definición 2.4. Parasitoides himenópteros: insectos del orden Hymenoptera cuyas larvas
se desarrollan dentro o sobre el cuerpo de otro artrópodo huésped, al que eventualmente matan
(Godfray, 2000).
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Definición 2.5. Simbiosis: interacción persistente entre organismos de distintas especies,
en la cual al menos uno de ellos obtiene un beneficio funcional. Estas asociaciones abarcan un
continuo ecológico que incluye mutualismo, comensalismo y parasitismo. En el contexto mi-
crobiano, la simbiosis constituye una propiedad organizacional clave que influye en la bioloǵıa
y evolución de los organismos hospedadores (McFall-Ngai et al., 2013).

Definición 2.6. Endosimbiosis: Tipo de simbiosis en la que uno de los organismos vive
dentro de las células o tejidos del otro organismo (Nowack and Melkonian, 2010).

Definición 2.7. Simbionte: microorganismos simbióticos que mantienen una relación mu-
tualista estrecha y continua (Guo et al., 2017).

Definición 2.8. Simbiontes bacterianos facultativos: bacterias que pueden vivir dentro
de un organismo huésped y proporcionar beneficios, pero cuya presencia no es esencial para
la supervivencia del huésped (Oliver et al., 2010).

Definición 2.9. Transferencia: v́ıa de transmisión para que los simbiontes extiendan su
distribución (Guo et al., 2017).

Nota 2.2. Tipos de transferencia:

1. Vertical, es decir, de madre a hijo, es la principal v́ıa de propagación de los simbiontes
dentro de una población; y

2. Horizontal, es decir, de un individuo a otro dentro de una población o entre especies;
esta ocurre ocasionalmente.

2.2. Modelo áfidos, parasitoides y endosimbiontes en plantas
(RN AEP )

El presente modelo, denominado RN AEP , se construye bajo el enfoque de RN com-
binado con la metodoloǵıa de construcción orientada por COT. Esta aproximación permite
desarrollar un modelo matemático que integra de manera coherente las interacciones ecológicas
observadas entre áfidos (Acyrthosiphon pisum), sus endosimbiontes facultativos y sus enemi-
gos naturales, los parasitoides (Aphidius ervi).

El uso de RN proporciona una representación estructural precisa de las interacciones entre
las especies del sistema, permitiendo identificar las relaciones causales y la dinámica de trans-
misión de los endosimbiontes, aśı como las interacciones depredador-presa entre los áfidos y los
parasitoides. Por otro lado, la metodoloǵıa COT garantiza que el modelo esté fundamentado
en principios teóricos sólidos, derivados de la literatura cient́ıfica revisada y de las hipótesis
formuladas en la narrativa ecológica.
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La narrativa ecológica del sistema (2.2.1) establece las bases conceptuales del modelo, de-
finiendo las especies involucradas, sus caracteŕısticas biológicas y las interacciones clave que
se modelan en RN AEP . A partir de esta narrativa, se identifican las hipótesis fundamentales
que gúıan la creación de las reacciones del modelo, permitiendo una representación precisa de
los procesos ecológicos.

En las secciones siguientes, se describen las especies de la comunidad ecológica y las reac-
ciones ecológicas que las conectan, seguidas por la formalización matemática del modelo, que
incluye la derivación de ecuaciones diferenciales que describen la dinámica poblacional y sim-
biótica del sistema. Este enfoque integrado asegura que el modelo capture adecuadamente
las complejas interacciones entre áfidos, endosimbiontes y parasitoides, proporcionando una
herramienta anaĺıtica para su estudio.

2.2.1. Narrativa ecológica

Introducción

Algunas comunidades ecológicas albergan interacciones biológicas de alta complejidad, cu-
ya dinámica puede ser representada mediante redes de reacciones que capturan las interaccio-
nes entre sus especies. Un caso paradigmático es el sistema tritrófico compuesto por plantas
hospedadoras, áfidos fitófagos (Acyrthosiphon pisum), parasitoides himenópteros (Aphidius
ervi) y simbiontes bacterianos facultativos (Hamiltonella defensa) Oliver and Higashi (2019).
Este endosimbionte ha sido identificado como un mediador clave en la defensa de los áfi-
dos frente a parasitoides, al interferir con el desarrollo de las avispas dentro del hospedador.
Sin embargo, la especificidad de estas interacciones está determinada por la combinación de
genotipos de áfido, parasitoide y simbionte, dando lugar a una red de relaciones ecológicas
contextuales.

El modelo de Red de Reacciones (RN AEP ) se fundamenta en la caracterización de las
interacciones ecológicas que ocurren entre áfidos (Acyrthosiphon pisum), sus endosimbiontes
facultativos y sus enemigos naturales, los parasitoides (Aphidius ervi). Estas interacciones
están sustentadas por estudios cient́ıficos que describen la compleja dinámica entre estas
especies, donde los endosimbiontes desempeñan un rol crucial en la defensa de los áfidos
contra la parasitación. La identificación de las especies y las reacciones en el modelo surge de
una narrativa ecológica basada en hallazgos clave de la literatura cient́ıfica.

Desarrollo

Los áfidos, como herb́ıvoros que se alimentan de la savia de las plantas, mantienen re-
laciones simbióticas obligadas con bacterias endosimbióticas que les proporcionan nutrientes
esenciales. Sin embargo, también pueden albergar endosimbiontes facultativos, como Hamil-
tonella defensa, Serratia symbiotica y Regiella insecticola, que les confieren protección contra
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enemigos naturales. Según Oliver and Higashi (2019), estos endosimbiontes facultativos son
fundamentales para la defensa de los áfidos frente a los parasitoides, al interferir en el desa-
rrollo larval de estos dentro del huésped.

Con respecto a las reproducciones de las especies, los áfidos pueden reproducirse sexual o
asexualmente, como simplificación del modelo, consideraremos solamente la partenogénesis (o
reproducción asexual) (Hipótesis 1) y los parasitoides se reproducen sexualmente (Hipóte-
sis 2).

La transmisión de estos endosimbiontes puede ocurrir de manera vertical, de madre a des-
cendencia (Hipótesis 3), y de manera horizontal (Hipótesis 4), a través de vectores como
los parasitoides (Guo et al., 2017). Este último mecanismo es crucial para explicar la dinámica
de infección y la coexistencia de áfidos con diferentes endosimbiontes en poblaciones naturales.

La interacción entre los áfidos y los parasitoides está modelada en las interacciones (Hipóte-
sis 5 a 8), que describen la entrada de huevos de parasitoides en áfidos susceptibles, dife-
renciando entre aquellos que portan endosimbiontes y los que no . Los estudios de Oliver et
al. (2005, 2008) destacan que la protección conferida por H. defensa contra los parasitoides
es dependiente de factores ambientales, como la temperatura, y de la cepa bacteriana presente.

Las reacciones modeladas (Hipótesis 9 a 12) reflejan las posibles consecuencias de la pa-
rasitación: desde la muerte del parasitoide en presencia de endosimbiontes protectores, hasta
la conversión de los áfidos parasitados en nuevos parasitoides. Estas reacciones están respalda-
das por la evidencia de que los endosimbiontes pueden bloquear el desarrollo del parasitoide en
el huésped, como se ha demostrado en diversas cepas de H. defensa (Oliver and Higashi, 2019).

Finalmente, la mortalidad natural y logaŕıtmica (Hipótesis 13 a 17) se relacionan con
la regulación poblacional tanto de áfidos como de parasitoides, capturando la dinámica de
supervivencia y competencia dentro del sistema.

En conclusión, la formulación de esta narrativa ecológica permite identificar las especies e
interacciones que componen la red de reacciones RN AEP , estableciendo una base conceptual
clara para el desarrollo del modelo matemático y su posterior análisis. Este enfoque facilita
la comprensión de las hipótesis que sustentan el modelo, conectando directamente la teoŕıa
ecológica y la historia natural de las especies involucradas con las ecuaciones que describen
su dinámica.

2.2.2. Red de reacciones áfidos, endosimbiontes y parasitoides
De la narrativa ecológica desarrollada para la RN AEP podemos, similarmente a lo reali-

zado en el ejemplo 1.1, obtener las especies identificadas (en el cuadro 2.1) y las interacciones
consideradas (en el cuadro 2.2).
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Cuadro 2.1: Especies bióticas y abióticas del modelo RN AEP .

Id Descripción

A Áfido libre de endosimbiontes y parasitoides (Acyrthosiphon pisum).
AE Áfido con uno o varios endosimbiontes (Acyrthosiphon pisum con Hamiltonella de-

fensa).
Ap Áfido libre de endosimbiontes pero con un parasitoide (Acyrthosiphon pisum para-

sitado por Aphidius ervi).
AEp Áfido con uno o varios endosimbiontes y con parasitoide Acyrthosiphon pisum con

Hamiltonella defensa.
P Parasitoide (Aphidius ervi).
Pp Parasitoide preñado (Aphidius ervi buscando áfidos para poner sus huevos).
Pv Parasitoide post-reproducción (Aphidius ervi en fase post-reproductiva).

Cuadro 2.2: Interacciones ecológicas del modelo RN AEP y su relación con las hipótesis
ecológicas.

Id Reacción Interacción Referencia

r0 A → 2A Reproducción de A. Hipótesis 1
r1 AE → 2AE Reproducción de AE (transmisión vertical

del endosimbionte).
Hipótesis 3

r2 A + AE → 2AE Traspaso horizontal de E a A. Hipótesis 4
r3 2P → P + Pp Reproducción de parasitoide P . Hipótesis 2
r4 A + Pp → Ap + Pp Entrada de huevo de parasitoide en áfido

sin simbionte.
Hipótesis 5

r5 AE + Pp → AEp + Pp Entrada de huevo de parasitoide en áfido
con simbionte.

Hipótesis 6

r6 A + Pp → Ap + Pv Parasitismo con generación de parasitoide
virulento.

Hipótesis 7

r7 AE + Pp → AEp + Pv Parasitismo de áfido con simbionte, genera
parasitoide virulento.

Hipótesis 8

r8 Ap → A Muerte del huevo de parasitoide en áfido
sin simbionte.

Hipótesis 9
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Id Reacción Interacción Referencia

r9 AEp → AE Muerte del huevo de parasitoide en áfido
con simbionte.

Hipótesis 10

r10 Ap → P Conversión de áfido parasitado sin sim-
bionte en parasitoide.

Hipótesis 11

r11 AEp → P Conversión de áfido parasitado con sim-
bionte en parasitoide.

Hipótesis 12

r12 2A → A Mortalidad natural y loǵıstica de A. Hipótesis 13
r13 2AE → AE Mortalidad natural y loǵıstica de AE. Hipótesis 14
r14 2P → P Mortalidad natural y loǵıstica de P . Hipótesis 15
r15 2Pp → Pp Mortalidad natural y loǵıstica de Pp. Hipótesis 16
r16 2Pv → Pv Mortalidad natural y loǵıstica de Pv. Hipótesis 17

2.3. Resolución anaĺıtica del modelo RN AEP

En la modelación matemática de fenómenos biológicos complejos, la resolución anaĺıtica
desempeña un papel fundamental, al permitir una comprensión profunda de las dinámicas
subyacentes del sistema modelado. A través de la obtención de soluciones expĺıcitas para
las ecuaciones que describen estos sistemas, es posible identificar los parámetros cŕıticos que
gobiernan su comportamiento y predecir su evolución en el tiempo. Esto no solo facilita la va-
lidación de los supuestos biológicos adoptados, sino que también permite simplificar modelos
complejos, preservando sus caracteŕısticas esenciales (Edelstein-Keshet, 2005).

Sin embargo, intŕınsecamente la naturaleza no lineal de la mayoŕıa de los ecosistemas limi-
ta significativamente la aplicabilidad de métodos anaĺıticos exactos. En consecuencia, resulta
necesario el desarrollo de técnicas alternativas, como las soluciones aproximadas, el análisis
cualitativo y la reducción dimensional, que permitan explorar las propiedades fundamentales
del sistema y extraer conclusiones útiles (Murray, 2002).

En esta sección, se abordará el análisis del modelo RN AEP empleando ecuaciones di-
ferenciales ordinarias (EDOs), un enfoque esencial en la modelación matemática de sistemas
dinámicos continuos. Este modelo describe las interacciones ecológicas entre áfidos, endo-
simbiontes y parasitoides, capturando la complejidad de las relaciones ecológicas entre estas
especies. La estructura del modelo se fundamenta en un conjunto de reacciones ecológicas
que representan tanto los procesos de reproducción, infección y mortalidad de las poblaciones
involucradas, como las interacciones entre las mismas.
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El cuadro 2.2 resume las reacciones fundamentales del modelo RN AEP , las cuales son la
base para la derivación del sistema de ecuaciones diferenciales. A partir de las interacciones
descritas, se deriva un sistema completo de ecuaciones diferenciales ordinarias que representa
las dinámicas de las especies involucradas. Sin embargo, dada la complejidad del sistema
completo, en esta sección se presenta una versión simplificada del modelo RN AEP , que
conserva los mecanismos clave que gobiernan la dinámica de las especies. Esta reducción
facilita el análisis anaĺıtico y permite identificar las relaciones esenciales entre las especies del
sistema.

2.3.1. Sistema de EDOs del modelo RN AEP

El sistema de EDOs del modelo RN AEP 2.1, derivado de la ley de acción de masas,
describe la dinámica de concentraciones de especies bioqúımicas. Este sistema, estructurado
en términos polinómicos, permite analizar estados estacionarios y comportamientos dinámicos
emergentes de interacciones estequiométricas en redes de reacción complejas (Feinberg, 2019).

˙[A] = k0[A] + k8[Ap] − k4[A][Pp] − k6[A][Pp] − k2[A][AE] − k12[A]2 ,

˙[Ap] = k4[A][Pp] + k6[A][Pp] − k8[Ap] − k10[Ap] ,

˙[AE] = k1[AE] + k2[A][AE] + k9[AEp] − k5[AE][Pp] − k7[AE][Pp] − k13[AE]2 ,

˙[AEp] = k5[AE][Pp] + k7[AE][Pp] − k9[AEp] − k11[AEp] ,

˙[P ] = k10[Ap] + k11[AEp] − k3[P ]2 − k14[P ]2 ,

˙[Pp] = k3[P ]2 − k4[A][Pp] − k5[AE][Pp] − k6[A][Pp] − k7[AE][Pp] − k15[Pp]2 ,

˙[Pv] = k6[A][Pp] + k7[AE][Pp] − k16[Pv]2 .

(2.1)

Estos sistemas EDOs en modelos de redes de reacción constituyen una herramienta esen-
cial para la modelación y análisis de interacciones complejas, permitiendo una descripción
cuantitativa y precisa de las tasas de cambio en las concentraciones de las especies involucra-
das. Estos sistemas se derivan de manera rigurosa a partir de los principios fundamentales de
la cinética qúımica, donde la velocidad de cada reacción está definida por la concentración
de los reactivos elevados a una potencia que corresponde a su coeficiente estequiométrico,
conforme a la ley de acción de masas (Feinberg, 2019; Goutsias and Lee, 2006).

En el contexto del modelo RN AEP , cada especie es representada por una ecuación dife-
rencial que integra de manera simultánea las contribuciones de las reacciones de producción
y consumo, capturando de manera integral la compleja dinámica del sistema. Esta estructura
permite el estudio de fenómenos cŕıticos como la estabilidad de los estados estacionarios, las
bifurcaciones y las transiciones entre múltiples estados estables, aspectos fundamentales para
comprender el comportamiento emergente de redes de reacciones en sistemas ecológicos (Guo
et al., 2017; Oliver and Higashi, 2019; Suweis et al., 2015). Además, este enfoque facilita el

60



análisis de la sostenibilidad y resiliencia de las comunidades ecológicas modeladas, proporcio-
nando una base sólida para el estudio de interacciones complejas entre especies y su entorno
(Allesina and Tang, 2015; May, 1972).

Sistema de EDOs del modelo RN AEP simplificado

En 2.3 expusimos que, dado el elevado nivel de complejidad inherente al sistema completo
de ecuaciones diferenciales del modelo RN AEP , y con el fin de facilitar su análisis anaĺıtico,
se opta por una versión reducida del modelo. Esta simplificación se fundamenta en la consi-
deración exclusiva de las especies A, Ap, P , Pp y Pv, seleccionadas por su relevancia en las
dinámicas clave del sistema. Esta elección permite capturar los mecanismos esenciales que
gobiernan las interacciones ecológicas y las dinámicas poblacionales de áfidos, parasitoides y
sus respectivas variantes. El modelo resultante conserva la estructura fundamental del sistema
original, pero reduce su dimensión, facilitando aśı su estudio y potencial resolución.

˙[A] = k0[A] − k4[A][Pp] − k6[A][Pp] + k8[Ap] − k12[A]2 ,

˙[Ap] = k4[A][Pp] + k6[A][Pp] − k8[Ap] − k10[Ap] ,

˙[P ] = −k3[P ]2 + k10[Ap] − k14[P ]2 ,

˙[Pp] = k3[P ]2 − k6[A][Pp] − k15[Pp]2 ,

˙[Pv] = k6[A][Pp] − k16[Pv]2 .

Al agrupar términos semejantes, obtenemos el siguiente sistema de EDOs:

˙[A] = k0[A] − (k4 + k6)[A][Pp] + k8[Ap] − k12[A]2 ,

˙[Ap] = (k4 + k6)[A][Pp] − (k8 + k10)[Ap] ,

˙[P ] = −(k3 + k14)[P ]2 + k10[Ap] ,

˙[Pp] = k3[P ]2 − k6[A][Pp] − k15[Pp]2 ,

˙[Pv] = k6[A][Pp] − k16[Pv]2 .

(2.2)

El sistema de EDOs 2.2 aún sigue siendo altamente complejo en relación a su solución
anaĺıtica, lo que se expresa en su nivel de no linealidad al intentar realizar su resolución
algebraica. Por lo que, consideramos dos casos fundamentados en su contexto biológico que
nos permitieron determinar su solución anaĺıtica. En estos casos, consideramos las constantes
{æ, œ} ∈ R.

Caso 2.1. [A] = æ
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0 = æk0 − (k4 + k6)æ[Pp] + k8[Ap] − k12æ2 ,

˙[Ap] = (k4 + k6)æ[Pp] − (k8 + k10)[Ap] ,

˙[P ] = −(k3 + k14)[P ]2 + k10[Ap] ,

˙[Pp] = k3[P ]2 − k6æ[Pp] − k15[Pp]2 ,

˙[Pv] = k6æ[Pp] − k16[Pv]2 .

(2.3)

y

Caso 2.2. [P ] = œ

˙[A] = k0[A] − (k4 + k6)[A][Pp] + k8[Ap] − k12[A]2 ,

˙[Ap] = (k4 + k6)[A][Pp] − (k8 + k10)[Ap] ,

0 = −(k3 + k14)œ2 + k10[Ap] ,

˙[Pp] = k3œ2 − k6[A][Pp] − k15[Pp]2 ,

˙[Pv] = k6[A][Pp] − k16[Pv]2 .

(2.4)

Nota 2.3. Para la resolución de los casos 2.1 y 2.2 del modelo RN AEP consideramos el
sistema en el estado estacionario, lo que implica igualar los sistemas de EDOs (2.3) y (2.4)
a cero.

Desarrollo del Caso 2.1:

Igualamos el sistema de EDOs 2.3 a cero para considerar el estado estacionario.

0 = æk0 − æ(k4 + k6)[Pp] + k8[Ap] − æ2k12 , (2.5)
0 = æ(k4 + k6)[Pp] − (k8 + k10)[Ap] , (2.6)
0 = −(k3 + k14)[P ]2 + k10[Ap] , (2.7)
0 = k3[P ]2 − æk6[Pp] − k15[Pp]2 , (2.8)
0 = k6æ[Pp] − k16[Pv]2 . (2.9)

De la ecuación 2.5 despejamos [Pp] en función de [Ap]. Por lo que, obtenemos [Pp]:

0 = æk0 − æ(k4 + k6)[Pp] + k8[Ap] − æ2k12 ,

æ(k4 + k6)[Pp] = k8[Ap] + æk0 − k12æ2 ,

[Pp] = k8
(k4 + k6)

[Ap]
æ + (k0 − æk12)

(k4 + k6) .

(2.10)

Con el resultado obtenido de [Pp] y 2.6, calculamos [Ap] de la siguiente manera:
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0 = æ(k4 + k6)[Pp] − (k8 + k10)[Ap] ,

0 = æ(k4 + k6)
(

k8
(k4 + k6)

[Ap]
æ + (k0 − æk12)

(k4 + k6)

)
− (k8 + k10)[Ap] ,

0 = k8[Ap] + æ(k0 − æk12) − (k8 + k10)[Ap] ,

0 = æ(k0 − æk12) − k10[Ap] ,

[Ap] = æ(k0 − æk12)
k10

.

(2.11)

Nota 2.4. Por las definiciones que hemos realizado hasta el momento sabemos que {æ, k0, k10, k12} ∈
R+. Por lo que, podemos deducir que

[Ap] = æ(k0 − æk12)
k10

,

Como en este caso, [A] se consideró constante (æ), se determina que la variación de la
concentración [Ap] es directamente proporcional a la diferencia entre las tasas de natalidad y
mortalidad de A, es decir, (æk0−æ2k12) e inversamente proporcional por la transformación de
Ap a P , es decir, (k10). Lo que se condice con el contexto ecológico en relación a la influencia
de A y Ap en [Ap] según el sistema RN AEP .

Con el resultado obtenido de [Ap] en (2.11) y (2.7), calculamos [P ] de la siguiente manera:

0 = −(k3 + k14)[P ]2 + k10[Ap] ,

(k3 + k14)[P ]2 = k10[Ap] ,

[P ]2 = k10
(k3 + k14) [Ap] ,

[P ]2 = k10
(k3 + k14)

(æ(k0 − æk12)
k10

)
,

[P ]2 = æ(k0 − æk12)
(k3 + k14) ,

[P ] = ±
√

æ(k0 − æk12)
(k3 + k14) ,

[P ] =
√

æ(k0 − æk12)
(k3 + k14) .

(2.12)

Nota 2.5. Si bien los resultados que encontramos para [P ] en 2.12 son dos ráıces, solo es
plausible la ráız positiva

√
[P ] ∈ R+ en consideración al contexto biológico implicado.

Nota 2.6. Del resultado de [P ] y por las definiciones realizadas sabemos que {æ, k0, k3, k12, k14} ∈
R+. Por lo que, obtenemos como condición que:
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æ(k0 − æk12)
(k3 + k14) ≥ 0 ,

Se determina que la variación de la concentración [P ] es directamente proporcional a la dife-
rencia entre las tasas de natalidad y mortalidad de A, es decir, (æk0 − æ2k12) e inversamente
proporcional por la reproducción y mortalidad de P , es decir, (k3 + k10). Lo que se condice
con el contexto ecológico en relación a la influencia de las concentraciones de A, Ap y P en
[P ] según el sistema RN AEP .

Con el resultado obtenido de [Pp] en función de [Ap] en (2.10) y el resultado de [Ap] en
(2.11), calculamos [Pp] de la siguiente manera:

[Pp] = k8
(k4 + k6)

[Ap]
æ + (k0 − æk12)

(k4 + k6) ,

[Pp] = k8
(k4 + k6)

(æ(k0 − æk12)
k10

)
æ + (k0 − æk12)

(k4 + k6) ,

[Pp] = k8
(k4 + k6)

(
k0 − æk12

k10

)
+ (k0 − æk12)

(k4 + k6) ,

[Pp] =
(

k8
k10

+ 1
) (

k0 − æk12
k4 + k6

)
.

(2.13)

Nota 2.7. Por las definiciones realizadas sabemos que {æ, k0, k4, k6, k10, k12} ∈ R+. Por lo
que, obtenemos como condición que:

k0 − æk12 ≥ 0 ,

k0
k12

≥ æ ,

Podemos asociar la condición determinada en la nota 2.7 desde el modelo RN AEP cons-
truido hacia un contexto biológico, en función de la representación e influencia de las cons-
tantes cinéticas k0 y k12 (tasas de natalidad y mortalidad de A).

En conclusión, podemos confirmar que, para que el valor de [A] sea constante (̸= 0), la
tasa de reproducción de A (k0) debe ser, como mı́nimo, mayor o igual a la tasa de muerte
natural y loǵıstica de A (k12). Lo que se confirma por lo expuesto por Guo et al. (2017) en
relación a que, en contextos ecológicos, cuando la tasa de mortalidad supera a la de natalidad,
las poblaciones tienden a declinar, lo que puede llevar a la extinción.

Con el resultado obtenido de [Pp] en (2.13) y (2.9), calculamos [Pv] de la siguiente manera.
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0 = k6æ[Pp] − k16[Pv]2 .

0 = k6æ
(

k8
k10

+ 1
) (

k0 − æk12
k4 + k6

)
− k16[Pv]2 ,

k16[Pv]2 = k6æ
(

k8
k10

+ 1
) (

k0 − æk12
k4 + k6

)
,

[Pv]2 = æ k6
k16

(
k8
k10

+ 1
) (

k0 − æk12
k4 + k6

)
,

[Pv] = ±
√

æ k6
k16

(
k8
k10

+ 1
) (

k0 − æk12
k4 + k6

)
,

[Pv] =
√

æ k6
k16

(
k8
k10

+ 1
) (

k0 − æk12
k4 + k6

)
.

(2.14)

Nota 2.8. Si bien los resultados que encontramos para [Pv] en 2.14 son dos ráıces, solo es
plausible un valor de [Pv] ∈ R+ en consideración al contexto biológico implicado.

Nota 2.9. Por las definiciones realizadas sabemos que {æ, k0, k4, k6, k8, k10, k12, k16} ∈ R+.
Por lo que, obtenemos como condición que:

æ k6
k16

(
k8
k10

+ 1
) (

k0 − æk12
k4 + k6

)
≥ 0 ,

k0 − æk12
k4 + k6

≥ 0 ,

k0 − æk12 ≥ 0 ,

k0
k12

≥ æ .

Desarrollo del Caso 2.2:

Igualamos el sistema de EDOs 2.4 a cero para considerar el estado estacionario.

0 =k0[A] − (k4 + k6)[A][Pp] + k8[Ap] − k12[A]2 , (2.15)
0 =(k4 + k6)[A][Pp] − (k8 + k10)[Ap] , (2.16)
0 = − (k3 + k14)œ2 + k10[Ap] , (2.17)
0 =k3œ2 − k6[A][Pp] − k15[Pp]2 , (2.18)
0 =k6[A][Pp] − k16[Pv]2 . (2.19)

De la ecuación 2.17 obtenemos directamente [Ap]:
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0 = − œ2(k3 + k14) + k10[Ap] ,

k10[Ap] =œ2(k3 + k14) ,

[Ap] =œ2 (k3 + k14)
k10

.

(2.20)

Con el resultado obtenido de [Ap] y 2.16, calculamos [A][Pp] de la siguiente manera:

0 =(k4 + k6)[A][Pp] − (k8 + k10)[Ap] ,

(k4 + k6)[A][Pp] =(k8 + k10)[Ap] ,

[A][Pp] =(k8 + k10)
(k4 + k6) [Ap] ,

[A][Pp] =œ2 (k8 + k10)
(k4 + k6)

(k3 + k14)
k10

.

(2.21)

Con el resultado obtenido de [A][Pp], [Ap] y 2.15, calculamos [A] de la siguiente manera:

0 =k0[A] − (k4 + k6)[A][Pp] + k8[Ap] − k12[A]2 ,

0 =k12[A]2 − k0[A] + (k4 + k6)[A][Pp] − k8[Ap] ,

0 =k12[A]2 − k0[A] + (k4 + k6)œ2 (k8 + k10)
(k4 + k6)

(k3 + k14)
k10

− œ2k8
(k3 + k14)

k10
,

0 =k12[A]2 − k0[A] + œ2(k3 + k14) .

(2.22)

Notar que, esta es una ecuación cuadrática en [A], que se puede resolver usando la fórmula
general de resolución de ecuaciones cuadráticas. Donde

a = k12 ,

b = −k0 ,

c = œ2(k3 + k14) .

Por lo tanto, obtenemos que:

[A] = k0 ±
√

(−k0)2 − 4œ2k12(k3 + k14)
2k12

,

[A] =
k0 ±

√
k0

2 − 4œ2k12(k3 + k14)
2k12

.

(2.23)

Nota 2.10. Si bien los resultados que encontramos para [A] en 2.23 son dos ráıces, debemos
evaluar si el valor de estas ráıces de [A] ∈ R+ en consideración al contexto biológico implicado.
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Nota 2.11. Por las definiciones realizadas sabemos que {æ, k0, k3, k6, k12, k14, k15} ∈ R+. Por
lo que obtenemos:

k0 ±
√

k0
2 − 4œ2k12(k3 + k14)

2k12
≥ 0 ,

k0 ±
√

k0
2 − 4œ2k12(k3 + k14) ≥ 0 ,

De la nota 2.11 tenemos que realizar los siguientes análisis:

k0 +
√

k0
2 − 4œ2k12(k3 + k14) ≥ 0 ,

k0 +
√

k0
2 − 4œ2k12(k3 + k14) ≥ 0 ,√

k0
2 − 4œ2k12(k3 + k14) ≥ k0 ,

k0
2 − 4œ2k12(k3 + k14) ≥ k0

2 ,

−4œ2k12(k3 + k14) ≥ 0 ,

4œ2k12(k3 + k14) ≤ 0 .

(2.24)

Condición que no se cumple en ningún caso, ya que todos los valores son ∈ R+.

k0 −
√

k0
2 − 4œ2k12(k3 + k14) ≥ 0 ,

k0 −
√

k0
2 − 4œ2k12(k3 + k14) ≥ 0 ,√

k0
2 − 4œ2k12(k3 + k14) ≤ k0 ,

k0
2 − 4œ2k12(k3 + k14) ≤ k0

2 ,

−4œ2k12(k3 + k14) ≤ 0 .

(2.25)

Condición que se cumple en todos los casos (menos para = 0), ya que todos los valores
son ∈ R+.

En conclusión, de los análisis de condiciones (2.24) y (2.25) concluimos que la solución
plausible para [A], en contexto biológico, es:

[A] =
k0 −

√
k0

2 − 4œ2k12(k3 + k14)
2k12

. (2.26)

Con el resultado obtenido de [A] y 2.18, calculamos [Pp] de la siguiente manera:
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0 =k3œ2 − k6[A][Pp] − k15[Pp]2 ,

0 =k15[Pp]2 + k6[A][Pp] − k3œ2 ,

0 =k15[Pp]2 + k6

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

 [Pp] − k3œ2 .

(2.27)

Notar que, esta es una ecuación cuadrática en [Pp], que se puede resolver usando la fórmula
general de resolución de ecuaciones cuadráticas. Donde

a = k15 ,

b = k6

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

 ,

c = −k3œ2 ,

Por lo tanto, obtenemos que:

[Pp] =

−k6

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12


2k15

±

√√√√√k6

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

2

− 4œ2k12(k3 + k14)

2k15
,

[Pp] =

−k6

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12


2k15

±

√√√√√k6
2

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

2

− 4œ2k12(k3 + k14)

2k15
.

(2.28)

Nota 2.12. Si bien los resultados que encontramos para [Pp] en 2.28 son dos ráıces, debe-
mos evaluar si el valor de estas ráıces de [Pp] ∈ R+ en consideración al contexto biológico
implicado.

Nota 2.13. Por las definiciones realizadas sabemos que {œ, k0, k3, k12, k14, k15} ∈ R+. Por lo
que obtenemos:
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−k6

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12


2k15

±

√√√√√k6
2

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

2

− 4œ2k12(k3 + k14)

2k15
≥ 0 ,

De la nota 2.13 tenemos que realizar los siguientes análisis:

− k6

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12



+

√√√√√k6
2

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

2

− 4œ2k12(k3 + k14)

2k15
≥ 0 ,

+

√√√√√k6
2

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

2

− 4œ2k12(k3 + k14)

2k15

≥ k6

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12


k6

2

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

2

− 4œ2k12(k3 + k14) ,

≥ k6
2

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

2

,

− 4œ2k12(k3 + k14) ≥ 0 .

(2.29)

Condición que no se cumple en ningún caso, ya que todos los valores son ∈ R+.
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− k6

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12



−

√√√√√k6
2

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

2

− 4œ2k12(k3 + k14)

2k15
≥ 0 ,

−

√√√√√k6
2

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

2

− 4œ2k12(k3 + k14)

2k15

≥ k6

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

 ,

k6
2

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

2

− 4œ2k12(k3 + k14)

≥ k6
2

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

2

,

− 4œ2k12(k3 + k14) ≥ 0 .

(2.30)

Condición que se cumple en todos los casos (menos para = 0), ya que todos los valores
son ∈ R+.

En conclusión, de los análisis de condiciones (2.24) y (2.25) concluimos que la solución
plausible para [Pp], en contexto biológico, es:

[Pp] =

−k6

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12


2k15

±

√√√√√k6
2

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12

2

− 4œ2k12(k3 + k14)

2k15
.

(2.31)
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0 = k6[A][Pp] − k16[Pv]2 ,

0 = k6
k0 −

√
k0

2 − 4œ2k12(k3 + k14)
2k12

[Pp] − k16[Pv]2 ,

[Pv]

[Pv]k16 − k6
k0 −

√
k0

2 − 4œ2k12(k3 + k14)
2k12

 = 0 .

(2.32)

Por lo tanto, tenemos que:

[Pv] = 0 ∨ [Pv]k16 − k6
k0 −

√
k0

2 − 4œ2k12(k3 + k14)
2k12

= 0 . (2.33)

Del resultado en (2.33) y el contexto biológico, finalmente, obtenemos que:

[Pv]k16−k6
k0 −

√
k0

2 − 4œ2k12(k3 + k14)
2k12

= 0 ,

[Pv] = k6
k16

k0 −
√

k0
2 − 4œ2k12(k3 + k14)

2k12
.

(2.34)
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Por lo tanto, de la resolución anaĺıtica de los casos 2.1 y 2.2 obtuvimos como resultados
que:

Ref. Resultado Resultado

Caso 2.1 2.2

[A] æ
k0 −

√
k2

0 − 4œ2k12(k3 + k14)
2k12

[Ap] æ(k0 − æk12)
k10

œ2 (k3 + k14)
k10

[P ]
√

æ(k0 − æk12)
(k3 + k14) œ

[Pp]
(

k8
k10

+ 1
)

k0 − æk12
k4 + k6

−k6

(
k0−

√
k2

0−4œ2k12(k3+k14)
2k12

)
2k15

−

√
k2

6

(
k0−

√
k2

0−4œ2k12(k3+k14)
2k12

)2

2k15

− 4œ2k12(k3 + k14)
2k15

[Pv]
√

æ k6
k16

(
k8
k10

+ 1
)

k0 − æk12
k4 + k6

k6
k16

k0 −
√

k2
0 − 4œ2k12(k3 + k14)

2k12

Cuadro 2.3: Resumen de resultados de la resolución del sistema de EDOs simplificado 2.2.

En consecuencia, la diferencia fundamental entre ambos casos radica en el efecto que
provoca la variable que se mantiene constante:

En el caso [A] = æ, se congela una especie que actúa como sustrato en múltiples reaccio-
nes clave, simplificando sustancialmente la dinámica del sistema mediante la eliminación
de términos no lineales de segundo orden en [A].

En cambio, en el caso [P ] = œ, se restringe una variable que participa principalmente en
procesos cuadráticos de transformación y cuya dinámica está acoplada indirectamente
a otras especies mediante intermediarios como [Pp] y [Ap], conservando aśı una mayor
complejidad estructural en las ecuaciones restantes.

Como resultado, los comportamientos dinámicos obtenidos difieren marcadamente entre
ambos escenarios. Esto evidencia que el análisis no necesariamente debe arrojar resultados
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equivalentes, ya que la elección de la variable a fijar modifica la topoloǵıa funcional del siste-
ma y, por tanto, su resolución anaĺıtica. Sin embargo, podemos destacar que esta estrategia,
aunque reduccionista, permite explorar distintas facetas del modelo y contribuye a una com-
prensión más rica de sus posibles reǵımenes dinámicos.

Aspecto comparado Caso 1: [A] = æ Caso 2: [P ] = œ

Variable fijada Especie base y reguladora en
múltiples reacciones

Intermediario involucrado en
transformaciones cuadráticas

Efecto sobre la no lineali-
dad

Reducción significativa de térmi-
nos no lineales

Se mantienen términos cuadráti-
cos en otras especies

Simplificación de ecuacio-
nes

Alta: permite resolver directa-
mente varias EDOs

Baja: se conserva mayor acopla-
miento entre variables

Facilidad de solución
anaĺıtica

Alta: sistema parcialmente des-
acoplado

Baja: ecuaciones aún acopladas y
no lineales

Implicancia biológica Supone abundancia o estabilidad
de [A]

Supone control o constancia en la
población [P ]

Resultado dinámico Soluciones más estables y con in-
terpretaciones directas

Mayor variabilidad en el compor-
tamiento de las especies

Cuadro 2.4: Comparación entre los dos enfoques anaĺıticos aplicados al sistema RN AEP .

2.4. Resolución numérica del modelo RN AEP

En esta sección, se presenta la implementación de la resolución numérica del modelo
RN AEP mediante métodos numéricos de integración temporal, utilizando el esquema de
Euler expĺıcito, un método ampliamente utilizado para la aproximación de soluciones de sis-
temas EDOs (Burden and Faires, 2015). Este enfoque numérico permite obtener soluciones
aproximadas de las dinámicas de las especies A, Ap, P y Pp en función del tiempo, propor-
cionando una visualización clara de su evolución temporal.

El método de Euler expĺıcito se basa en la discretización del tiempo en pasos uniformes
∆t, de manera que las soluciones de las variables del sistema se actualizan iterativamente de
acuerdo con la siguiente expresión:

x(t + ∆t) = x(t) + ∆t f(x(t), t) (2.35)
donde:

x(t) representa el vector de las concentraciones de las especies en el tiempo t.
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f(x(t), t) es la función que describe las tasas de cambio del sistema, definida por las
EDOs del modelo RN AEP .

La implementación de este método se llevó a cabo utilizando la libreŕıa PyCOT del lenguaje
de programación Python, la cual proporciona herramientas avanzadas para la integración y
simulación de sistemas dinámicos no lineales (Veloz, 2025). Esta libreŕıa permite definir las es-
pecies, reacciones y procesos que componen el modelo, garantizando una configuración flexible
para el análisis del sistema ecológico de interacción entre áfidos, parasitoides y endosimbiontes.

El esquema de simulación numérica implementado incluye las siguientes etapas:

1. Definición del sistema de EDOs: Se implementa el sistema de ecuaciones diferen-
ciales que describe la dinámica de las especies, en primera instancia para las especies A,
Ap, P y Pp y en segunda instancia para las especies AE, AEp, P y Pp, considerando las
interacciones descritas en la sección 2.3.

2. Configuración de parámetros: Se establecen las tasas de reacción ki correspondientes
a cada proceso biológico, que fueron calibradas y validadas en función de las condiciones
biológicas del sistema estudiado.

3. Inicialización del sistema: Se define un conjunto de condiciones iniciales para las
poblaciones de las especies, representando un estado inicial del sistema.

4. Ejecución del método de Euler expĺıcito: El sistema es integrado numéricamente
mediante el siguiente esquema iterativo.

Para A, Ap, P , Pp y Pv:

a)

[A](t + ∆t) = [A](t) + ∆t
(
k0[A](t) − (k4 + k6)[A](t)[Pp](t) + k8[Ap](t) − k12[A]2(t)

)
,

[Ap](t + ∆t) = [Ap](t) + ∆t ((k4 + k6)[A](t)[P ](t) − (k8 + k10)[Ap](t)) ,

[P ](t + ∆t) = [P ](t) + ∆t
(
k10[Ap](t) − (k3 + k14)[P ]2(t)

)
,

[Pp](t + ∆t) = [Pp](t) + ∆t
(
k3[P ]2(t) − k6[A](t)[Pp](t) − k15[Pp]2(t)

)
,

[Pv](t + ∆t) = [Pv](t) + ∆t
(
k6[AE](t)[Pp](t) − k16[Pv]2(t)

)
.

(2.36)
y para AE, AEp, P , Pp y Pv:
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b)

[AE](t + ∆t) = [AE](t) + ∆t(k0[AE](t) − (k4 + k6)[AE](t)[Pp](t)
+ k8[AEp](t) − k12[AE]2(t)),

[AEp](t + ∆t) = [AEp](t) + ∆t ((k4 + k6)[AE](t)[Pp](t) − (k8 + k10)[AEp](t)) ,

[P ](t + ∆t) = [P ](t) + ∆t
(
k10[AEp](t) − (k3 + k14)[P ]2(t)

)
,

[Pp](t + ∆t) = [Pp](t) + ∆t
(
k3[P ]2(t) − k6[AE](t)[Pp](t) − k15[Pp]2(t)

)
,

[Pv](t + ∆t) = [Pv](t) + ∆t
(
k6[AE](t)[Pp](t) − k16[Pv]2(t)

)
.

(2.37)

5. Análisis de los resultados: Las trayectorias temporales de las especies son analizadas
para identificar patrones de estabilidad, oscilación o extinción, permitiendo evaluar las
condiciones de sostenibilidad del sistema en función de los parámetros del modelo.

El uso del método de Euler expĺıcito está justificado por su simplicidad y eficiencia compu-
tacional en la resolución de sistemas de EDOs. Sin embargo, se debe considerar que este méto-
do es sensible al tamaño del paso temporal ∆t, el cual debe seleccionarse adecuadamente para
garantizar la estabilidad y precisión de las soluciones obtenidas (Iserles, 2009).

Cuadro 2.5: Simulaciones dinámicas para distintas Condiciones iniciales de [A](0), [P ](0) y
[Pp](0) del sistema (2.36). Elaboración propia en Python™, libreŕıa pyCOT (Veloz, 2025).

a) [A](0) = 16, [P ](0) = 15 y [Pp](0) = 1. b) [A](0) = 32, [P ](0) = 15 y [Pp](0) = 1.
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a) [A](0) = 64, [P ](0) = 15 y [Pp](0) = 1. b) [A](0) = 128, [P ](0) = 15 y [Pp](0) = 1.

Cuadro 2.6: Simulaciones dinámicas para distintas Condiciones iniciales de AE(0), [P ](0) y
[Pp](0) del sistema (2.37). Elaboración propia en Python™, libreŕıa pyCOT (Veloz, 2025).

a) AE(0) = 16, [P ](0) = 15 y [Pp](0) = 1. b) AE(0) = 32, [P ](0) = 15 y [Pp](0) = 1.

a) AE(0) = 64, [P ](0) = 15 y [Pp](0) = 1. b) [A](0) = 128, [P ](0) = 15 y [Pp](0) = 1.

76



2.5. ¿Coherencia entre análisis estructural y dinámico?
El análisis estructural y el análisis dinámico del modelo RN AEP permiten evaluar la

consistencia entre la configuración de las interacciones ecológicas y el comportamiento resul-
tante del sistema. En este sentido, la coherencia entre ambos enfoques se evidencia en que las
interacciones definidas en la red de reacciones y sus hipótesis subyacentes se reflejan adecua-
damente en las dinámicas poblacionales observadas.

A través del análisis estructural, se identificaron las especies bióticas y abióticas, aśı como
las interacciones clave que las conectan. Estas interacciones se modelaron mediante ecuaciones
diferenciales que describen la dinámica poblacional del sistema.

Inicialmente, se realizó la resolución anaĺıtica del modelo, lo que permitió derivar soluciones
generales que describen el comportamiento teórico de las poblaciones de áfidos, parasitoides
y endosimbiontes bajo distintas condiciones iniciales. Posteriormente, la resolución numérica,
basada en el análisis estructural, proporcionó una validación emṕırica de estos resultados, al
permitir simular escenarios espećıficos y observar la evolución temporal de las poblaciones.

Los resultados numéricos, por medio del método de Euler expĺıcito, fueron consistentes
con las predicciones anaĺıticas, lo que respalda la robustez del modelo y su capacidad para
capturar las interacciones ecológicas clave del sistema.

En conclusión, la coherencia entre el análisis estructural y el análisis dinámico del modelo
RN AEP respalda la validez del enfoque adoptado, garantizando que las hipótesis ecológicas
que sustentan el modelo se reflejan adecuadamente en las dinámicas poblacionales simuladas.
Esto permite utilizar el modelo como una herramienta confiable para explorar el impacto de
distintas condiciones ecológicas y evaluar el papel de los endosimbiontes en la dinámica de las
poblaciones de áfidos y parasitoides.

77



2.6. Introducción de perturbaciones en comunidades ecológi-
cas

En el estudio de la sostenibilidad de las comunidades ecológicas, la persistencia de las espe-
cies es un indicador fundamental que permite evaluar la capacidad de la comunidad biológica
para mantenerse a lo largo del tiempo. Sin embargo, las comunidades ecológicas no existen en
un estado aislado, sino que están sujetas a una amplia variedad de factores externos e internos
que pueden alterar sus dinámicas. Estas alteraciones, conocidas como perturbaciones, juegan
un papel crucial en la estabilidad y sostenibilidad del sistema, al modificar las interacciones
entre las especies y las condiciones ambientales que las sustentan (Connell, 1978; Dakos et al.,
2008).

Las perturbaciones pueden manifestarse de diversas formas, desde eventos esporádicos
como fenómenos climáticos extremos, hasta cambios graduales en las condiciones ambienta-
les o la introducción de nuevas especies. En el contexto de esta investigación, estudiaremos
perturbaciones estructurales, las que se definen como:

a) La inclusión de una concentración determinada de una especie en el sistema en un tiempo
espećıfico tp.

b) La inclusión de una interacción (ri) definida en la RN en un tiempo espećıfico tp.

Esta definición formaliza el concepto de perturbación estructural como una alteración
medible que puede afectar directamente las concentraciones de las especies en el espacio de
estados del sistema.

La introducción de perturbaciones estructurales permite explorar cómo los sistemas ecológi-
cos responden a cambios en sus estados en el largo plazo, desde la perspectiva de RN + COT,
concretamente la estructura de la organización predominante. Para cuantificar su impacto, es
necesario considerar la persistencia de las especies en presencia de dichas perturbaciones, lo
que implica analizar cómo las concentraciones de las especies se mantienen o desaparecen a
lo largo del tiempo. En esta sección, se realiza una aproximación para analizar el efecto de
las perturbaciones estructurales del tipo a), es decir, incluiremos una concentración determi-
nada (C(tp)) en un tiempo determinado (tp), utilizando el marco de la persistencia definido
previamente. Esto permitirá una comprensión rigurosa de los mecanismos que determinan la
sostenibilidad en comunidades ecológicas reales, que será abordada en la parte (II) de esta
investigación .

2.6.1. Perturbaciones y persistencia ecológica
La variabilidad en las comunidades ecológicas surge tanto de procesos internos, como las

dinámicas contextuales de interacción entre especies, como de factores externos, entre los que
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destacan las perturbaciones ambientales. Estas últimas representan una de las principales
fuerzas que influyen en la estructura, dinámica y persistencia de las especies a lo largo del
tiempo (May, 1972; Chesson, 2000; Levin, 1998). Como una primera aproximación, la presente
investigación ha modelado las perturbaciones como la inclusión de una concentración de una
especie en un tiempo espećıfico tp. Esta aproximación permite analizar cómo la introducción o
aumento puntual de una especie impacta la estabilidad del sistema. Formalmente, la inclusión
de una perturbación en el sistema se describe como:

x(t + ∆t) =
{

x(t) + ∆xp(t) t = tp

x(t) t ̸= tp

(2.38)

donde:

x representa el vector de concentraciones de las especies en el tiempo t.

∆xp(t) representa el vector de concentraciones de las especies. Por lo que, corresponde
a la perturbación que se busca realizar en tp.

tp es el tiempo espećıfico en el cual se aplica la perturbación.

Desarrollamos un Script de Python™ para la simulación numérica del modelo RN AEP
con la inclusión de la perturbación (ver Apéndice A.1). Esta perturbación se implementa de
manera que cuando t = tp, el método numérico de Euler expĺıcito toma las concentraciones
iniciales de las especies en ese instante como:

x(tp) = x(t) + ∆xp (2.39)

De este modo, el cálculo de la evolución dinámica continúa desde las nuevas concentracio-
nes perturbadas. Esto garantiza que el sistema reaccione inmediatamente a la perturbación
introducida, permitiendo evaluar su impacto en las trayectorias de las especies y su capacidad
de persistencia. Por lo tanto, esta formulación permite evaluar si el sistema ecológico es capaz
de absorber las perturbaciones y retornar a un estado de equilibrio, o si, por el contrario, di-
chas perturbaciones desencadenan procesos que conducen a la extinción de una o más especies.

La implementación de las perturbaciones se llevó a cabo en el marco del modelo RN AEP ,
cuyas soluciones numéricas se obtuvieron mediante el método de Euler expĺıcito, tal como
se describe en la sección 2.4. Este esquema numérico fue aplicado tanto al sistema original
(A, Ap, P, Pp) como a su versión modificada (AE, AEp, P, Pp), mediante el ingreso en tp = 20
de [P ](tp) = 15 como perturbación, lo que permite contrastar las respuestas del sistema ante
condiciones iniciales y perturbaciones espećıficas. Los resultados obtenidos son presentados
en los cuadros (2.7 y 2.9), que recogen las simulaciones dinámicas del sistema bajo diferentes
condiciones iniciales y una perturbación, detallada debajo de cada gráfica, común para todas
las simulaciones.
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A través de esta metodoloǵıa, se busca no solo observar las trayectorias temporales de
las especies bajo perturbación, sino también comparar estos resultados con los obtenidos sin
perturbación. Esta comparación permite identificar las condiciones bajo las cuales las especies
logran persistir, incluso ante alteraciones, y establecer una relación entre la magnitud de
la perturbación y la capacidad de recuperación del sistema. En los análisis posteriores, se
evaluará visualmente la respuesta del sistema perturbado en contraposición a su dinámica
inicial, permitiendo una interpretación clara del impacto de las perturbaciones estructurales
en la sostenibilidad ecológica.

Cuadro 2.7: Comparativa para simulaciones dinámicas con y sin perturbación, para distin-
tas Condiciones iniciales de [A](0), [P ](0) y [Pp](0) del sistema (2.36). Cálculos en Python™
Apéndice A.1).

a) [A](0) = 16, [P ](0) = 15 y [Pp](0) = 1. a) Con perturbación de [P ](tp) = 15 y tp = 20.

b) [A](0) = 32, [P ](0) = 15 y [Pp](0) = 1. b) Con perturbación de [P ](tp) = 15 en tp = 20.
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c) [A](0) = 64, [P ](0) = 15 y [Pp](0) = 1. c) Con perturbación de [P ](tp) = 15 en tp = 20.

d) [A](0) = 128, [P ](0) = 15 y [Pp](0) = 1. d) Con perturbación de [P ](tp) = 15 en tp = 20.

Cuadro 2.8: Resumen cuadro comparativo de los resultados del Cuadro 2.7 de simulaciones
dinámicas con y sin perturbación.

Condiciones iniciales Perturbación Estado final Comentario

a) [A](0) = 16, [P ](0) =
15 y [Pp](0) = 1

NO (P, Pp, Pv) Los parasitoides extinguen a
los áfidos.

SI (P, Pp, Pv) Los parasitoides extinguen a
los áfidos antes del ingreso de
[P ](tp). El efecto de la pertur-
bación se refleja en el aumento
de [Pp](100).

b) [A](0) = 32, [P ](0) =
15 y [Pp](0) = 1

NO (A, Ap, P, Pp, Pv) Áfidos y parasitoides coexis-
ten.
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Condiciones iniciales Perturbación Estado final Comentario

SI (P, Pp, Pv) Los parasitoides extinguen a
los áfidos después del ingreso
de [P ](tp).

c) [A](0) = 64, [P ](0) =
15 y [Pp](0) = 1

NO (A, Ap, P, Pp, Pv) Áfidos y parasitoides coexis-
ten.

SI (A, Ap, P, Pp, Pv) Áfidos y parasitoides coexis-
ten. El efecto de la perturba-
ción se refleja en el aumen-
to de concentración final de
[Ap](100) y [Pp](100).

d) [A](0) = 128, [P ](0) =
15 y [Pp](0) = 1

NO (A, Ap, P, Pp, Pv) Áfidos y parasitoides coexis-
ten.

SI (A, Ap, P, Pp, Pv) Áfidos y parasitoides coexis-
ten. El efecto de la perturba-
ción se refleja en la disminu-
ción de [A](100) y el aumento
de [Ap](100) y [Pp](100).

Cuadro 2.9: Comparativa para simulaciones dinámicas con y sin perturbación, para distintas
Condiciones iniciales de AE(0), [P ](0) y [Pp](0) del sistema (2.37). Cálculos en Python™
Apéndice A.1).

a) [AE](0) = 16, [P ](0) = 15 y [Pp](0) = 1. a) Con perturbación de [P ](tp) = 15 en tp = 20.
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b) [AE](0) = 32, [P ](0) = 15 y [Pp](0) = 1. b) Con perturbación de [P ](tp) = 15 en tp = 20.

c) [AE](0) = 64, [P ](0) = 15 y [Pp](0) = 1. c) Con perturbación de [P ](tp) = 15 en tp = 20.

d) [AE](0) = 128, [P ](0) = 15 y [Pp](0) = 1. d) Con perturbación de [P ](tp) = 15 en tp = 20.
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Cuadro 2.10: Resumen cuadro comparativo de los resultados del Cuadro 2.9 de simulaciones
dinámicas con y sin perturbación.

Condiciones iniciales Perturbación Estado final Comentario

a) [AE](0) = 16, [P ](0) =
15 y [Pp](0) = 1

NO (AE) Los áfidos con endosimbiontes
controlan el parasitismo.

SI (AE) La perturbación se refleja en
tp con la disminución de
[AE](tp) ≈ 0. Sin embargo,
los áfidos con endosimbiontes
neutralizan el efecto de la in-
clusión de [P ](tp) y controlan
el potencial parasitismo.

b) [AE](0) = 32, [P ](0) =
15 y [Pp](0) = 1

NO (AE) Los áfidos con endosimbiontes
controlan el parasitismo.

SI (AE) La perturbación se refleja en
tp con la disminución de
[AE](tp) ≈ 0. Sin embargo,
los áfidos con endosimbiontes
neutralizan el efecto de la in-
clusión de [P ](tp) y controlan
el potencial parasitismo.

c) [AE](0) = 64, [P ](0) =
15 y [Pp](0) = 1

NO (AE) Los áfidos con endosimbiontes
controlan el parasitismo.

SI (AE) La perturbación se refleja en
tp con la disminución de
[AE](tp) ≈ 0. Sin embargo,
los áfidos con endosimbiontes
neutralizan el efecto de la in-
clusión de [P ](tp) y controlan
el potencial parasitismo.

d) [AE](0) = 128, [P ](0) =
15 y [Pp](0) = 1

NO (AE) Los áfidos con endosimbiontes
controlan el parasitismo.
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Condiciones iniciales Perturbación Estado final Comentario

SI (AE) La perturbación se refleja en
tp con la disminución de
[AE](tp) ≈ 0. Sin embargo,
los áfidos con endosimbiontes
neutralizan el efecto de la in-
clusión de [P ](tp) y controlan
el potencial parasitismo.

Los resultados presentados en los Cuadros (2.7 y 2.9), junto con los resúmenes detallados
en los Cuadros 2.8 y 2.10, evidencian de forma concreta y expĺıcita el impacto diferencial de
las perturbaciones aplicadas en el sistema. Las simulaciones muestran cómo la adición pun-
tual de una concentración adicional de 20 de la especie P en el instante espećıfico tp provoca
modificaciones claras en las trayectorias dinámicas de las especies involucradas, con efectos
que vaŕıan según las condiciones iniciales y la composición espećıfica del sistema.

Por ejemplo, en el Cuadro 2.8, bajo condiciones iniciales con bajas concentraciones de
áfidos A, la introducción de la perturbación no altera la extinción temprana de los áfidos por
parte de los parasitoides, aunque śı se observa un aumento en la concentración final de los
parasitoides Pp. En contraste, para concentraciones iniciales medias y altas de A, la pertur-
bación provoca cambios en la coexistencia de especies, reflejados en variaciones cuantitativas
en las concentraciones finales de Ap y Pp, y en algunos casos, una reducción significativa de
A, evidenciando una respuesta dinámica ajustada al est́ımulo externo.

Por su parte, en el Cuadro 2.10), que involucra áfidos con endosimbiontes AE, se observa
que, a pesar de la disminución brusca en la concentración de AE en el momento de la pertur-
bación tp, esta población logra neutralizar el efecto de la introducción de P , manteniendo un
control efectivo sobre el parasitismo y preservando su estabilidad poblacional a lo largo del
tiempo.

Este análisis detallado de las trayectorias pre y post perturbación permite no solo verificar
la capacidad del modelo para captar la estabilidad y respuesta dinámica del sistema, sino
también identificar condiciones espećıficas bajo las cuales el sistema muestra resiliencia o
vulnerabilidad frente a perturbaciones puntuales. Por ende, los resultados respaldan la utilidad
del modelamiento para explorar escenarios ecológicos reales, aunque reconocen la necesidad
de validar y extender estos enfoques a comunidades ecológicas más complejas y heterogéneas.

85



86



Parte II

Sostenibilidad en comunidades
ecológicas reales
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Introducción

En esta parte de la investigación, modelaremos una comunidad ecológica real utilizando
redes de reacciones (RN). La aplicabilidad de este marco teórico se exploró, espećıficamente,
a través del estudio de la comunidad ecológica de la Isla Navarino (RN IN). Isla que está
ubicada en el extremo sur de Chile, un entorno ecológico complejo que se caracteriza por una
gran diversidad de especies y dinámicas interacciones entre ellas. Esta comunidad ecológica ha
sido objeto de investigación, y se ha trabajado en colaboración con un experto ecólogo, lo que
ha permitido obtener información emṕırica relevante para la validación del modelo propuesto.

El Caṕıtulo 3 expone la metodoloǵıa utilizada para modelar este tipo de comunidades
ecológicas, destacando la implementación de los resultados obtenidos en la Parte I de la
investigación, los cuales permitieron aplicar herramientas matemáticas que describen las in-
teracciones ecológicas complejas y su evolución estructural en el contexto de comunidades
ecológicas con interacciones complejas. Para ilustrar estos conceptos, se utilizarán como gúıa
los resultados obtenidos en el trabajo de Crego et al. (2016), que describe interacciones en
una comunidad ecológica de la Isla Navarino en el marco del modelamiento por redes tróficas.

En el Caṕıtulo 4, presentamos un enfoque numérico para analizar la sostenibilidad de
comunidades ecológicas a través del estudio de sus reǵımenes de persistencia. Mediante el
análisis de abstracciones del sistema RN IN , identificamos las configuraciones estructurales
que caracterizan las posibles formas de organización ecológica del sistema. Posteriormente, a
través de simulaciones dinámicas, evaluamos la estabilidad de estas abstracciones, utilizando
un modelo basado en RN y técnicas de simulación estocástica. Desarrollamos e implemen-
tamos un algoritmo que permite generar condiciones iniciales, simular la evolución de las
abstracciones y construir una matriz de transición de Markov. Finalmente, calculamos las
probabilidades de sostenibilidad para cada abstracción (o subconjuntos potenciales). Este en-
foque permite cuantificar la capacidad de las abstracciones para mantener su estructura a lo
largo del tiempo, proporcionando una medida clara de su persistencia y contribuyendo a una
comprensión profunda de la sostenibilidad en comunidades ecológicas reales.
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Caṕıtulo 3

Modelamiento de comunidades
ecológicas reales

Como caso de comunidad ecológica real tomaremos La Isla Navarino, que está ubicada
en el extremo sur de Chile y forma parte de la Reserva de la Biosfera Cabo de Hornos,
constituyendo un ejemplo destacado de la región subantártica magallánica. Esta comunidad
ecológica alberga una biodiversidad única, caracterizada por bosques de especies nativas como
Nothofagus betuloides, Nothofagus pumilio y Drimys winteri, aśı como complejos de turberas
y praderas que conforman el paisaje natural de la isla. Sin embargo, a lo largo de los años,
este entorno ha sido afectado por la introducción de varias especies invasoras, particularmente
mamı́feros como el castor americano (Castor canadensis), la rata almizclera (Ondatra zibethi-
cus) y el visón americano (Neovison vison), cuyas interacciones han alterado las estructuras
y procesos ecológicos de la comunidad ecológica local (Crego et al., 2016).

El castor americano, reconocido como un “ingeniero de ecosistemas”, ha modificado signi-
ficativamente los hábitats acuáticos a través de la construcción de presas, alterando los ciclos
de nutrientes y transformando grandes áreas de bosques de Nothofagus en praderas dominadas
por hierbas y plantas acuáticas. Esta transformación de los hábitats ha creado condiciones
propicias para el establecimiento de otras especies invasoras, como la rata almizclera, que se
beneficia de estos ambientes modificados por los castores. Además, el visón, un “depredador
generalista”, ha encontrado en estas nuevas condiciones ecológicas una fuente abundante de
presas, impactando gravemente la fauna nativa, especialmente las aves y mamı́feros pequeños.

La comunidad ecológica de la Isla Navarino, caracterizada por su topograf́ıa montañosa y
su clima fŕıo y oceánico, proporciona un contexto ideal para estudiar las interacciones entre
especies invasoras en un entorno relativamente aislado. Estas interacciones, en su mayoŕıa
facilitadoras, dan lugar a un proceso conocido como “derrumbe invasivo” o invasional melt-
down, donde las especies invasoras se benefician mutuamente, amplificando sus impactos sobre
la biodiversidad local Crego et al. (2016). El estudio de estos efectos no solo es crucial para
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comprender los impactos ecológicos a nivel local, sino también para desarrollar estrategias
de conservación y manejo adaptadas a la restauración de sistemas ecológicos afectados por
invasiones biológicas.

En este caṕıtulo, se presenta un modelo matemático que busca representar las interacciones
entre estas especies invasoras y su impacto sobre la estructura y funcionalidad de la comunidad
ecológica de la Isla Navarino. El modelo considera las alteraciones en los hábitats acuáticos
y terrestres, las redes tróficas modificadas por la presencia de estas especies, y los efectos a
largo plazo sobre la biodiversidad nativa. Esta aproximación proporciona una herramienta útil
para evaluar la sostenibilidad de las comunidades ecológicas en áreas afectadas por invasiones
biológicas y es un ejemplo de cómo las redes de reacciones pueden utilizarse para modelar
interacciones complejas en la ecoloǵıa de sistemas naturales.

3.1. Modelo de una comunidad ecológica real: Isla Navarino.

3.1.1. Análisis de la modelación ecológica tradicional en Isla Navarino

El estudio de Crego et al. (2016) en la Isla Navarino utiliza la modelación ecológica tradi-
cional a través de redes tróficas para comprender las interacciones entre especies invasoras y
su impacto en la comunidad ecológica. Este enfoque permite visualizar las relaciones alimen-
tarias y los flujos de enerǵıa dentro del sistema, representando las interacciones entre el castor
americano, la rata almizclera y el visón americano, especies invasoras que alteran profunda-
mente los hábitats y las dinámicas tróficas locales. La red trófica facilita la identificación de
cómo estas especies modifican la comunidad ecológica al influir en las cadenas alimentarias y
generar efectos energéticos.

Sin embargo, las redes tróficas presentan una estructura simplificada de las interacciones
ecológicas, mostrando cómo las especies invasoras afectan a las nativas. En el caso de la Isla
Navarino, el castor altera el hábitat acuático creando presas que favorecen la presencia de
la rata almizclera, lo que a su vez beneficia al visón como depredador de la rata. Este mo-
delo tradicional ayuda a representar cómo las especies interactúan a nivel trófico, pero tiene
limitaciones al no capturar la complejidad de los efectos indirectos y las interacciones contex-
tuales que ocurren en la comunidad ecológica. Los cambios en el hábitat, la competencia y la
modificación de los ciclos de nutrientes no siempre son reflejados adecuadamente.

En consecuencia, aunque la modelación a través de redes tróficas proporciona una base
útil para entender las dinámicas alimentarias, su simplicidad puede limitar la capacidad de
representar de manera precisa los impactos ecológicos de las especies invasoras en sistemas
complejos como el de la Isla Navarino. Para abordar esta complejidad, seŕıa necesario integrar
enfoques de modelado más sofisticados que incluyan factores ambientales, efectos espaciales
y contextuales, y que consideren los impactos indirectos de las interacciones. Este tipo de
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modelos avanzados permitiŕıa una mejor comprensión de los procesos ecológicos y ofreceŕıa
herramientas más efectivas para la gestión y conservación de las comunidades ecológicas afec-
tadas por invasiones biológicas.

3.1.2. Procedimiento de modelado con RN de la comunidad ecológica Isla
Navarino

El procedimiento de modelado de la comunidad ecológica de la Isla Navarino con RN
implica una integración de conocimiento emṕırico obtenidos a partir de estudios previos y la
experticia ecológica local. En el estudio de Crego et al. (2016), se identificaron y analizaron
las interacciones tróficas entre las especies invasoras, como el castor, la rata almizclera y el
visón, utilizando redes tróficas como base. Este enfoque se complementó con el conocimiento
emṕırico proporcionado por un experto en el ecosistema subantártico, que aportó información
valiosa sobre la dinámica de especies nativas y la alteración de hábitats por especies invaso-
ras. A través de la aplicación de RN, modelamos las relaciones complejas entre estas especies,
incorporando no solo las interacciones alimentarias directas, sino también los efectos indirec-
tos sobre la estructura ecológica de la comunidad ecológica. Generaremos abstracciones de la
comunidad ecológica, con el objetivo de realizar una primera aproximación a la cuantificación
de la sostenibilidad en comunidades ecológicas reales. Este enfoque h́ıbrido, que combina el
análisis emṕırico y las herramientas de modelado avanzadas, proporciona un marco robus-
to para simular y estimar los efectos de las especies invasoras en una comunidad ecológica
compleja y dinámica como la de la Isla Navarino.

3.1.3. Narrativa ecológica

Introducción

Las interacciones ecológicas entre especies invasoras son un componente crucial para com-
prender la dinámica de las comunidades ecológicas afectados por procesos de invasión biológi-
ca. En el sistema de la Isla Navarino, las interacciones entre el castor americano (Castor
canadensis), la rata almizclera (Ondatra zibethicus) y el visón americano (Neovison vison)
forman una red de relaciones ecológicas que impacta de manera significativa en las comuni-
dades nativas y las condiciones ambientales de este ecosistema subantártico (Hipótesis 0).

Es en este contexto, que los procesos que se abarcarán corresponden principalmente a
los de modificación del hábitat, alimentación, reproducción, depredación y competencia, in-
teracciones entre especies, procesos de descomposición y ciclo de nutrientes e interacciones
intraespećıficas; de esta manera, se está proporcionando una base sólida para el desarrollo del
modelo matemático asociado.

93



Desarrollo

Modificación del Hábitat por Castor (Hipótesis 1 a 6)

El castor, como especie ingeniera ecosistémica, modifica el hábitat construyendo represas
y castoreras. Estas transforman bosques de Nothofagus spp. en humedales dominados por pas-
tos exóticos y aguas estancadas. Las represas bloquean el flujo de cauces, generando lagunas
y espacios ribereños post-aluviones, lo que transforma ecosistemas forestales en humedales
abiertos (Hipótesis 1). La acumulación de agua en las lagunas favorece la disponibilidad de
hábitats acuáticos para especies como el puye (Galaxias maculatus) y la trucha (Oncorhynchus
spp.), ampliando la red trófica acuática (Hipótesis 2). El establecimiento de castoreras pro-
porciona refugio y áreas seguras para la reproducción del castor, fortaleciendo su capacidad de
expansión (Hipótesis 3). Las represas alteran el flujo natural del agua, modificando las con-
diciones de los cauces y promoviendo la formación de llanuras y áreas inundadas (Hipótesis
4). El aumento de infraestructura construida por el castor desplaza especies vegetales nati-
vas, favoreciendo la colonización de pastos exóticos (Hipótesis 5). La transformación de los
bosques en humedales reduce la disponibilidad de hábitats forestales continuos, afectando la
distribución de aves y pequeños mamı́feros (Hipótesis 6).

Establecimiento de la Rata Almizclera (Hipótesis 7 a 12)

La rata almizclera, una especie semiacuática, encuentra en los humedales modificados por
el castor las condiciones adecuadas para establecerse, alimentarse y reproducirse en refugios
ribereños (Hipótesis 7). El uso de pastos exóticos como alimento por la rata almizclera indica
que la vegetación introducida facilita su supervivencia (Hipótesis 8). Los refugios ribereños
proporcionan protección para su reproducción, estableciendo poblaciones estables en las zonas
intervenidas (Hipótesis 9). La proximidad entre recursos alimenticios y refugios aumenta la
eficiencia energética y el éxito reproductivo de la rata almizclera (Hipótesis 10). La rata
almizclera se convierte en una presa clave para el visón, estableciendo una relación trófica
directa (Hipótesis 11). La presencia estable de la rata almizclera facilita la expansión del
visón en áreas ribereñas, mejorando su éxito reproductivo (Hipótesis 12).

Depredación y Competencia del Visón (Hipótesis 13 a 18)

El visón, un depredador generalista, se beneficia de la transformación del hábitat por el
castor, ya que las poblaciones de rata almizclera representan una fuente importante de alimen-
to (Hipótesis 13).Además, el visón depreda sobre aves acuáticas, aves pequeñas y roedores,
afectando negativamente sus poblaciones (Hipótesis 14). La disponibilidad y diversidad de
presas en zonas ribereñas y humedales condiciona la dieta del visón y su éxito reproductivo
(Hipótesis 15).El visón también depreda sobre peces como el puye y la trucha, integrándose
en múltiples niveles tróficos y ampliando su nicho ecológico (Hipótesis 16). El establecimien-
to del visón puede provocar efectos en cascada en la red trófica, debido a su impacto sobre
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múltiples niveles funcionales (Hipótesis 17) .La presión predatoria del visón, combinada con
su alta tasa reproductiva, representa una amenaza constante para la resiliencia de las comu-
nidades nativas (Hipótesis 18).

Interacciones con Otras Especies (Hipótesis 19 a 25)

La alteración del bosque nativo por talas de castores y la consecuente apertura del dosel fa-
cilitan la colonización por pastos exóticos, desplazando a especies vegetales nativas (Hipótesis
19). El cambio en la estructura vegetal afecta negativamente a aves nativas como el pájaro car-
pintero, al reducir la disponibilidad de árboles muertos y maduros necesarios para nidificación
(Hipótesis 20). Las aves pequeñas y aves acuáticas sufren efectos indirectos por la pérdida
de hábitat y la presión predatoria del visón (Hipótesis 21). Los pequeños roedores nativos
enfrentan depredación por parte del visón, reduciendo su abundancia poblacional (Hipótesis
22). Las modificaciones del hábitat inducidas por castores y la expansión del visón generan
impactos acumulativos que reducen la resiliencia del sistema ecológico (Hipótesis 23). Las
condiciones medioambientales cŕıticas, como lluvias intensas o deshielos, promueven aluvio-
nes que alteran el flujo de los cauces y fomentan la creación de espacios ribereños (Hipótesis
24). Estos eventos ambientales recurrentes contribuyen a la persistencia de especies invasoras
oportunistas como el castor, la rata almizclera y el visón (Hipótesis 25).

Procesos de Descomposición y Ciclo de Nutrientes (Hipótesis 26 a 28)

Los árboles muertos (Nothofagus spp.) y otros restos vegetales que se acumulan en las
áreas intervenidas por castores entran en procesos de descomposición, promovidos por insec-
tos y microorganismos (Hipótesis 26).La descomposición del material orgánico en las lagunas
aumenta los nutrientes del suelo, alterando la composición qúımica del sustrato y po-
tenciando la sucesión de especies vegetales invasoras (Hipótesis 27).La acumulación
de restos vegetales en el fondo de las lagunas establece un nicho para comunidades de inverte-
brados acuáticos detrit́ıvoros, formando la base de una red trófica que soporta indirectamente
a peces como el puye y la trucha (Hipótesis 28).

Competencia entre Especies Acuáticas (Hipótesis 29 a 31)

La presencia de trucha (Oncorhynchus spp.) en las lagunas limita la abundancia de puye
(Galaxias maculatus) debido a la competencia por recursos alimenticios (Hipótesis 29).La
competencia entre trucha y puye modifica la estructura de la red trófica acuática, afectando
la disponibilidad de presas para el visón (Hipótesis 30).Las lagunas más grandes formadas
por represas mantienen poblaciones más diversas de peces, reduciendo los efectos negativos
de la competencia entre trucha y puye (Hipótesis 31).

Interacciones Intraespećıficas (Densidad Dependiente) (Hipótesis 32 a 34)
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La alta densidad de castores en una misma área provoca una reducción en su éxito re-
productivo debido a la competencia por recursos de construcción y alimentación (Hipótesis
32).El incremento en la población de visones aumenta la competencia por presas, reducien-
do su éxito reproductivo y favoreciendo su dispersión hacia nuevas áreas (Hipótesis 33).La
saturación de refugios ribereños limita la capacidad de reproducción de la rata almizclera,
reduciendo su éxito poblacional (Hipótesis 34).

3.1.4. Red de reacciones Isla Navarino (RN IN)
A partir de la narrativa ecológica desarrollada, se identificaron las entidades bióticas y

abióticas que conforman la comunidad ecológica de la Isla Navarino y las interacciones que
las conectan. Estas entidades y sus interacciones se organizaron en una red de reacciones
(RN IN) que captura los procesos de modificación del hábitat, alimentación, reproducción,
competencia y mortalidad que caracterizan este sistema. El Cuadro 3.1 presenta las entidades
definidas para el modelo, mientras que el Cuadro 3.2 describe las interacciones ecológicas mo-
deladas. Esta red proporciona una base clara para la representación matemática y simulación
del sistema.

Cuadro 3.1: Especies bióticas y abióticas consideradas para el modelo RN.

Id Nomenclatura Descripción

1 aluvion Flujo desbordado de agua generado por condiciones medioambienta-
les cŕıticas.

2 arbol Árbol vivo (Nothofagus spp.), especie arbórea dominante en el siste-
ma.

3 arbolm Árbol muerto (Nothofagus spp.), soporte de biodiversidad para insec-
tos y aves.

4 aveac Ave acuática, especie representativa del sistema.

5 avep Ave pequeña, incluyendo Passeriformes nativas y exóticas.

6 castor Castor alimentado (Castor canadensis), estado bien nutrido.

7 castorh Castor hambriento (Castor canadensis), en búsqueda de alimento.

8 cauce Cauce de agua natural, flujo de agua que mantiene el sistema.

9 conmac Condiciones medioambientales cŕıticas, como eventos de tormenta o
deshielo.

10 espriver Espacio ribereño formado tras eventos de aluvión.
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Id Nomenclatura Descripción

11 insecto Insectos que colonizan árboles muertos y otras áreas.

12 laguna Cuerpo de agua formado por acumulación detrás de una represa.

13 luz Luz solar, fuente de enerǵıa para la fotośıntesis.

14 madext Madera externa de un árbol vivo (Albura de Nothofagus spp.).

15 madint Madera interna de un árbol vivo (Duramen de Nothofagus spp.).

16 nido Estructura de reproducción para aves pequeñas y pájaros carpinteros.

17 orilla Zona ribereña entre el cauce y el bosque.

18 pajcar Pájaro carpintero (Campephilus magellanicus), ave nativa.

19 pastoexo Pasto exótico, vegetación introducida que compite con especies nati-
vas.

20 puye Puye (Galaxias maculatus), pez nativo del sistema.

21 ratal Rata almizclera (Ondatra zibethicus), roedor invasor asociado a am-
bientes húmedos.

22 ratalh Rata almizclera hambrienta, en búsqueda de alimento.

23 refugior Refugio construido por la rata almizclera a orillas del cauce.

24 represa Estructura de modificación del sistema ecológico creada por castores.

25 roedorp Roedor pequeño, representando especies nativas.

26 trucha Trucha (Oncorhynchus spp.), pez introducido y depredador del puye.

27 vison Visón (Neovison vison), depredador invasor en el sistema.

28 refugioc Refugio de castores, utilizado para cŕıa y protección.

Cuadro 3.2: Interacciones definidas para el modelo.

Id Reacción Interacción Referencia

r0 ∅ → cauce Entrada de flujo de agua al sistema. Hipótesis 0

r1 ∅ → luz Entrada de luz solar, fuente de
enerǵıa para fotośıntesis.

Hipótesis 0
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Id Reacción Interacción Referencia

r2 ∅ → conmac Condiciones medioambientales cŕıti-
cas, como clima extremo.

Hipótesis 24

r3 arbol + cauce + luz →
2arbol

Reproducción de árboles por fo-
tośıntesis.

Hipótesis 6, 23

r4 arbol+castor → castorh+
madext + madint

Consumo de árboles por castores,
obteniendo madera externa e inter-
na.

Hipótesis 19

r5 castorh + madext →
castor

Alimentación del castor con madera
externa.

Hipótesis 1

r6 castor + madint →
castorh + represa

Construcción de represas por casto-
res con madera interna.

Hipótesis 1, 3, 32

r7 castor + represa →
castorh + represa +
refugioc

Creación de refugio para castores en
la represa.

Hipótesis 1, 3

r8 2castor + refugioc →
2castorh + 3castor +
refugioc

Reproducción de castores en refu-
gios.

Hipótesis 3, 32

r9 castor → castorh Agotamiento de castores por falta de
alimento.

Hipótesis 1

r10 arbolm + insecto →
arbolm + 3insecto

Reproducción de insectos en árboles
muertos.

Hipótesis 26

r11 arbolm + pajcar →
arbolm + nido + pajcar

Creación de nidos por pájaro carpin-
tero.

Hipótesis 20

r12 nido + 2pajcar → nido +
4pajcar

Reproducción del pájaro carpintero
en nidos.

Hipótesis 20

r13 nido + 2avep → nido +
3avep

Reproducción de aves pequeñas en
nidos.

Hipótesis 20

r14 cauce+represa → cauce+
laguna + represa

Formación de lagunas por acumula-
ción de agua.

Hipótesis 1, 4, 25

r15 cauce + conmac →
aluvion + cauce

Generación de aluvión por condicio-
nes extremas.

Hipótesis 24
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Id Reacción Interacción Referencia

r16 aluvion+cauce → cauce+
espriver

Restauración del cauce después del
aluvión.

Hipótesis 1, 4, 24,
25

r17 cauce + espriver + luz →
cauce+espriver+pastoexo

Colonización de pasto exótico en
áreas alteradas.

Hipótesis 5, 19,
25, 27

r18 ratalh + pastoexo → ratal Alimentación de la rata almizclera
con pasto exótico.

Hipótesis 8, 10

r19 ratalh + orilla → ratalh +
orilla + refugior

Construcción de refugio por rata al-
mizclera.

Hipótesis 9, 34

r20 refugior + 2ratal →
refugior + 3ratal

Reproducción de rata almizclera. Hipótesis 7, 9, 10,
25, 34

r21 2roedorp → 6roedorp Reproducción de roedores pequeños. Hipótesis 7, 22

r22 2aveac + orilla →
10aveac + orilla

Reproducción de aves acuáticas. Hipótesis 21

r23 2avep + nido → 8avep +
nido

Reproducción de aves pequeñas en
nidos.

Hipótesis 21

r24 2puye → 50puye Reproducción explosiva de puye. Hipótesis 2, 28

r25 2trucha → 35trucha Reproducción de trucha. Hipótesis 2, 28

r26 20puye + trucha → trucha Alimentación de trucha con puyes. Hipótesis 29

r27 2vison → 6vison Reproducción de visón. Hipótesis 11, 12,
15, 18, 25, 33

r28 roedorp + vison → vison Alimentación del visón con roedores
pequeños.

Hipótesis 11, 13,
14, 17, 22, 33

r29 avep + vison → vison Alimentación del visón con aves pe-
queñas.

Hipótesis 13, 14,
18, 21, 33

r30 aveac + vison → vison Alimentación del visón con aves
acuáticas.

Hipótesis 14, 15,
18, 21

r31 puye + vison → vison Alimentación del visón con puye. Hipótesis 15, 30

r32 trucha + vison → vison Alimentación del visón con trucha. Hipótesis 15, 16,
17, 30

r33 2arbol → arbol Muerte natural de árboles por com-
petencia.

Hipótesis 6, 16, 23
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Id Reacción Interacción Referencia

r34 2aveac → aveac Muerte natural de aves acuáticas. Hipótesis 21

r35 2avep → avep Muerte natural de aves pequeñas. Hipótesis 21

r36 2castor → castor Muerte natural de castores. Hipótesis 20

r37 2castorh → castorh Muerte de castores hambrientos. Hipótesis 20

r38 2insecto → insecto Muerte natural de insectos. Hipótesis 22

r39 2pajcar → pajcar Muerte natural de pájaro carpintero. Hipótesis 20

r40 2pastoexo → pastoexo Muerte natural de pasto exótico. Hipótesis 22

r41 2puye → puye Muerte natural de puye. Hipótesis 22

r42 2ratal → ratal Muerte natural de rata almizclera. Hipótesis 22

r43 2roedorp → roedorp Muerte natural de roedores pe-
queños.

Hipótesis 22

r44 2trucha → trucha Muerte natural de trucha. Hipótesis 22

r45 2vison → vison Muerte natural de visón. Hipótesis 22

r46 arbol+laguna → arbolm+
laguna

Muerte de árboles por inundación. Hipótesis 6, 23

r47 arbol → arbolm Muerte natural de árboles. Hipótesis 23

r48 2arbolm → arbolm Descomposición de árboles muertos. Hipótesis 26

r49 2conmac → conmac Restablecimiento de condiciones am-
bientales promedio.

Hipótesis 31

r50 2represa + 2laguna →
represa + laguna

Reducción de cuerpos de agua por
competencia.

Hipótesis 31

r51 insecto + pajcar → pajcar Consumo de insectos por pájaro car-
pintero.

Hipótesis 20

r52 insecto + avep → avep Consumo de insectos por aves pe-
queñas.

Hipótesis 21
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Caṕıtulo 4

Sostenibilidad estructural y
dinámica

La sostenibilidad de comunidades ecológicas complejas es un aspecto fundamental para
comprender su capacidad de persistencia y resiliencia ante perturbaciones internas y externas.
En este caṕıtulo, se aborda el análisis de la sostenibilidad desde dos perspectivas complemen-
tarias, por un lado, la exploración estructural y, por otro lado, la exploración dinámica. La
exploración estructural permite identificar y caracterizar las abstracciones más frecuentes
del sistema, basándose en la generación y evaluación de subconjuntos funcionales represen-
tativos. Por su parte, la exploración dinámica profundiza en la estabilidad y la evolución
temporal de estos estados. Ambas exploraciones, se desarrollan mediante la construcción y
análisis de matrices de transición de Markov que capturan las probabilidades de permanencia
y transición entre dichas abstracciones bajo diferentes condiciones, incluyendo escenarios con
y sin perturbaciones. Este enfoque integrado posibilita un entendimiento más exhaustivo de
los mecanismos que subyacen a la sostenibilidad de la comunidad ecológica modelada, facili-
tando la identificación de patrones emergentes y la evaluación del impacto de factores bióticos
y abióticos en la dinámica ecosistémica.

4.1. Potenciales perturbaciones de la RN IN

La identificación de potenciales perturbaciones en las comunidades ecológicas es esencial
para comprender las interacciones y los posibles impactos de diversos factores sobre el equili-
brio en una comunidad ecológica. En este contexto, la suite de especies, reacciones y procesos
que pueden ser considerados como perturbaciones del sistema son aquellos que, al introdu-
cirse o modificarse, alteran significativamente las interacciones ecológicas y la dinámica de
las poblaciones dentro de una comunidad ecológica. Un ejemplo claro son las especies inva-
soras, las cuales, mediante mecanismos de competencia, depredación o mutualismo, pueden
desencadenar transformaciones drásticas en las estructuras de las comunidades ecológicas.
Particularmente, en el contexto de las comunidades ecológicas del extremo sur de América,
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como en la Isla Navarino, las especies como el castor (Castor canadensis), la rata almizclera
(Ondatra zibethicus) y el visón americano (Neovison vison), junto con sus interacciones, re-
presentan un modelo de perturbación ecológica. Estas especies, al actuar de manera conjunta
y modificar sus hábitats, pueden generar un proceso de “colapso invasional” que multiplica
los efectos negativos de cada especie, afectando tanto a la biodiversidad nativa como a los
procesos ecosistémicos. Aśı, en esta sección se desarrollarán los aspectos clave para la identi-
ficación y análisis de estos factores perturbadores dentro de la red de reacciones ecológicas,
con el fin de entender su potencial impacto sobre la sostenibilidad de la comunidad ecológica.

4.2. Cuantificación de la sostenibilidad de comunidades ecológi-
cas

La cuantificación de la sostenibilidad en comunidades ecológicas constituye un paso cŕıtico
para evaluar la capacidad del sistema para mantener su estructura y funcionalidad frente a
perturbaciones internas y externas. Tras la identificación y caracterización de las potenciales
perturbaciones en la red ecológica RN IN , resulta fundamental desarrollar métodos que per-
mitan medir de forma cuantitativa el grado de persistencia y estabilidad de las abstracciones
funcionales emergentes del sistema. En esta sección, se implementa un enfoque basado en la
construcción y análisis de matrices de transición de Markov, que reflejan las probabilidades
de permanencia y transición entre estados funcionales representativos bajo distintos escena-
rios, incluyendo la presencia o ausencia de perturbaciones. Esta cuantificación no solo facilita
la evaluación dinámica de la resiliencia de la comunidad, sino que también aporta informa-
ción clave para la interpretación de los mecanismos que favorecen o limitan la sostenibilidad
estructural y funcional dela comunidad ecológica modelada.

4.2.1. Algoritmo de cálculo de la sostenibilidad en comunidades ecológicas

A continuación, describimos detalladamente el funcionamiento del algoritmo desarrollado
para estudiar la evolución dinámica de una red de reacciones modelada mediante ecuaciones
diferenciales ordinarias, incluyendo simulaciones bajo condiciones normales y perturbadas, aśı
como el análisis de abstracciones y la construcción de una matriz de transición de Markov.

4.2.2. Descripción general metodológica del análisis computacional

El código desarrollado (ver Apéndice A.2 implementa un análisis integral para caracterizar
la sostenibilidad estructural y dinámica de comunidades ecológicas modeladas como redes de
reacciones. La implementación, realizada en Python™, integra principios de teoŕıa de conjun-
tos y cadenas de Markov para estudiar la dinámica de sistemas biológicos complejos a partir
de la generación y análisis de subconjuntos aleatorios de especies, facilitando la identificación
de patrones emergentes y comportamientos colectivos en redes metabólicas.
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El procedimiento inicia con la carga y procesamiento de la red de reacciones desde un
archivo de texto, extrayendo las especies y las interacciones definidas a través de transforma-
ciones estequiométricas. Se establece un vector de condiciones iniciales uniformes y se define
la cinética de reacción mediante la ley de acción de masas para todas las reacciones. Poste-
riormente, se implementa una interfaz interactiva que permite la selección manual de especies
relevantes, basada en conocimiento experto, para delimitar el espacio de análisis funcional
dentro de la comunidad ecológica modelada.

A continuación, el algoritmo genera aleatoriamente un conjunto de subconjuntos de espe-
cies activas mediante un modelo probabiĺıstico binomial, garantizando que ningún subconjunto
sea vaćıo para mantener la validez biológica de las simulaciones. Cada subconjunto se codifica
en un vector binario que representa la presencia o ausencia de cada especie, constituyendo las
condiciones iniciales para la simulación dinámica.

La simulación numérica de la dinámica del sistema se realiza ejecutando múltiples corridas
independientes, en cada una de las cuales se asignan concentraciones aleatorias a las especies
activas (con distribución de probabilidad uniforme entre 1 y 10) , con posibilidad de reducción
controlada en algunas especies para simular escenarios de invasión o variabilidad ambiental.
La integración temporal del sistema se efectúa con un módulo especializado que implementa
métodos numéricos adecuados para redes de reacciones.

Se almacenan los últimos pasos de cada simulación, que representan el comportamiento
asintótico del sistema, y se convierten en representaciones binarias para facilitar el análisis
cualitativo. Estos datos se consolidan en una lista global de estados que se utiliza para calcular
las frecuencias de aparición de cada estado único y para generar una clasificación ordenada
de los estados más frecuentes (denominados Lf).

Se aplica un criterio heuŕıstico para determinar un número óptimo de estados predomi-
nantes n, basado en la probabilidad de transiciones entre estados categorizados como “otros”,
garantizando que las transiciones entre estados menos frecuentes sean marginales. Con este
conjunto de estados predominantes se construye una matriz de transición que contabiliza las
transiciones observadas entre categoŕıas a lo largo de las simulaciones.

La matriz de transición se normaliza por filas para obtener probabilidades de transición
estocástica entre los estados Lf , construyendo aśı una matriz de transición de Markov. Esta
matriz es visualizada mediante mapas de calor con etiquetado, permitiendo identificar estados
altamente estables y patrones dominantes de transición, que representan atractores estructu-
rales del sistema.

Finalmente, se realiza un análisis de frecuencia de aparición de cada especie en los estados
Lf , comparando esta distribución con la frecuencia de presencia en las condiciones iniciales,

103



lo que aporta información sobre la relevancia funcional y la estabilidad relativa de especies en
configuraciones dominantes del sistema.

Esta arquitectura computacional provee una herramienta robusta y flexible para explorar
la dinámica y la sostenibilidad estructural de comunidades ecológicas modeladas como redes de
reacciones, facilitando la cuantificación probabiĺıstica de su estabilidad interna y permitiendo
detectar configuraciones cŕıticas para la resiliencia del ecosistema simulado.

4.2.3. La sostenibilidad de la comunidad ecológica RN IN .
A continuación, se presentan los resultados del cálculo de la sostenibilidad para la co-

munidad ecológica modelada por la red de reacciones RN IN , considerando dos enfoques
complementarios, por un lado, una exploración estructural y, por otro lado, una exploración
dinámica.

Exploración estructural:

El objetivo de esta etapa del análisis fue identificar patrones de sostenibilidad estructural
mediante la generación y evaluación de subconjuntos funcionales (abstracciones finales) bajo
distintas condiciones iniciales.

Aplicamos el algoritmo descrito en la Sección 4.2.1 para tres cantidades de subconjuntos
generados: N = 25, 50 y 75, mantuvimos constante la cantidad de simulaciones por subcon-
junto en M = 1000. Este procedimiento permitió comparar la composición estructural de los
subconjuntos más recurrentes en escenarios sin perturbación y con perturbación.

Ordenamos las abstracciones finales (denotadas como Lf) según su frecuencia de aparición,
desde la más recurrente (Lf1) y consideramos las dos siguientes con mayor frecuencia (Lf2,
Lf3), lo que permite evaluar la estabilidad estructural del sistema ecológico frente a diferentes
condiciones.

Presentamos los resultados en los Cuadros 4.1 y 4.2. El primer cuadro resume los con-
juntos de especies que conforman las abstracciones finales más frecuentes (Lf1, Lf2 y Lf3),
mientras que el segundo cuadro muestra su frecuencia relativa de ocurrencia en cada escenario,
permitiendo inferir tendencias de organización estructural resiliente frente a alteraciones.
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Cuadro 4.1: Comparativa de abstracciones finales más frecuentes por cantidad de subconjuntos
generados para simulaciones entre sistema sin perturbación (No) y con perturbación (Śı).
Cálculos obtenidos en Python™ (ver Apéndice A.2).

Lf Especies no na-
tivas

N = 25 N = 50 N = 75

Lf1
No

(cauce, luz, conmac, arbol, arbolm, insecto, pajcar, nido, avep,

aluvion, espriver, roedorp, aveac, orilla, puye)

Śı

(cauce, conmac, arbol, castor, castorh, madext, madint,

represa, refugioc, arbolm, insecto, pajcar, nido, avep, laguna,

aluvion, espriver, pastoexo, ratalh, ratal, refugior, roedorp,

aveac, puye, trucha, vison)

Lf2
No (cauce)

Śı (cauce)

Lf3
No

(cauce, luz, conmac, arbol, arbolm, insecto, pajcar, nido, avep,

aluvion, espriver, roedorp, aveac, orilla, puye)

Śı (cauce, luz,
arbol, pajcar)

(cauce, arbol, arbolm, nido, avep, espriver,

roedorp, aveac, orilla, puye)

El Cuadro 4.1 evidencia que, en ausencia de perturbaciones, los subconjuntos funcionales
recurrentes (Lf1 y Lf3) presentan una composición dominada por especies nativas con una
alta interconectividad ecológica. Frente a perturbaciones, la estructura de los subconjuntos
cambia significativamente, destacando la inclusión de especies no nativas como castor, trucha
y vison. Este fenómeno indica una reorganización de la comunidad ecológica hacia configura-
ciones alternativas, potencialmente impulsadas por el establecimiento de especies exóticas y
el desplazamiento de relaciones ecológicas previas. La presencia consistente de especies clave
bajo ambas condiciones sugiere abstracciones persistentes, mientras que los cambios reflejan
adaptaciones estructurales del sistema ante escenarios de estrés ecológico.

105



Cuadro 4.2: Comparativa de Distribución porcentual de abstracciones finales más frecuentes
por cantidad de subconjuntos generados para simulaciones entre sistema sin perturbación
(No) y con perturbación (Śı). Cálculos obtenidos en Python™ (ver Apéndice A.2).

Lf Especies no
nativas

N = 25 N = 50 N = 75

Lf1
No 86,70 % 87,44 % 79,15 %

Śı 93,60 % 98,60 % 86,36 %

Lf2
No 8,56 % 12,37 % 18,42 %

Śı 4,56 % 0,89 % 7,45 %

Lf3
No 0,64 % 0,12 % 0,17 %

Śı 1,26 % 0,02 % 4,90 %

El Cuadro 4.2 muestra que la abstracción Lf1 incrementa su frecuencia bajo perturbación,
alcanzando valores superiores al 93 %. Esto sugiere que Lf1 actúa como un estado estructural
altamente estable o atractor en el espacio de estados. Las abstracciones Lf2 y Lf3, por el contra-
rio, presentan una menor frecuencia y mayor sensibilidad ante la perturbación, lo que podŕıa
indicar una menor capacidad de sostenibilidad o una dependencia más fuerte de condiciones
espećıficas. Estos resultados evidencian que la comunidad ecológica posee configuraciones es-
tructurales robustas frente a perturbaciones, cuyo análisis dinámico será profundizado en la
sección siguiente.

Los resultados de esta etapa estructural permiten identificar configuraciones recurrentes
que representan posibles estados funcionales del sistema a partir de distintas cantidades de
subconjuntos. Sin embargo, para evaluar la robustez de dichas configuraciones y su comporta-
miento frente a múltiples trayectorias de simulación, es necesario complementar este análisis
con una exploración dinámica.

Exploración dinámica:

En esta sección, el objetivo es identificar patrones de sostenibilidad dinámica mediante
la generación y evaluación de subconjuntos funcionales (abstracciones finales) bajo distintas
condiciones iniciales.

Presentamos los resultados de la exploración dinámica para la comunidad ecológica mo-
delada RN IN , con la cantidad de subconjuntos fija en N = 75 y variación de la cantidad de
simulaciones M = 1000, 2000, 3000, 4000, 5000. El Cuadro 4.3 muestra las abstracciones fina-
les más frecuentes bajo condiciones sin perturbación (No) y con perturbación (Śı), mientras
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que en el Cuadro 4.4 presentamos la distribución porcentual correspondiente para cada caso.
Estos datos permiten analizar la estabilidad y recurrencia de distintos estados estructurales
en función de la intensidad y número de simulaciones realizadas.

Cuadro 4.3: Comparativa de abstracciones finales más frecuentes por cantidad de subconjuntos
generados para simulaciones entre sistema sin perturbación (No) y con perturbación (Śı).
Cálculos obtenidos en Python™ (ver Apéndice A.2).

Lf Especies
no nativas

M = 1.000 M = 2.000 M = 3.000 M = 4.000 M = 5.000

Lf1
No Abs1 (cauce) Abs1 (cauce) Abs1

Śı (cauce) Abs1 (cauce) Abs1 (cauce)

Lf2
No (cauce)

Śı (cauce)

Lf3
No

(cauce, arbol, arbolm, nido, avep, espriver, roedorp,

aveac, orilla, puye)

Śı Abs2

Donde:

Abs1 =
(cauce, luz, conmac, arbol, arbolm, insecto, pajcar, nido, avep, aluvion, espriver,

roedorp, aveac, orilla, puye)

MRN IN = Abs2 =
(cauce, luz, conmac, arbol, castor, castorh, madext, madint, represa,

refugioc, arbolm, insecto, pajcar, nido, avep, laguna, aluvion, espriver,

pastoexo, ratalh, ratal, orilla, refugior, roedorp, aveac, puye, trucha, vison)

Los resultados muestran que, tanto en el sistema sin perturbación como en el perturbado,
las abstracciones más frecuentes (Lf1) corresponden a estados estructuralmente distintos: la
abstracción con una sola especie activa (cauce) predomina en ciertos valores de M, mientras
que en otros predomina un conjunto amplio de especies activas (Abs1). Esta alternancia refle-
ja cómo la dinámica estructural del sistema es sensible a la intensidad y escala del muestreo
estad́ıstico, y sugiere la presencia de múltiples atractores en el espacio de fases que el sistema
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puede alcanzar bajo diferentes condiciones.

Desde una perspectiva dinámica, la aparición de estos atractores múltiples y la alternancia
en predominancia pueden interpretarse como manifestaciones de la complejidad intŕınseca de
la comunidad ecológica modelada, en donde la exploración exhaustiva mediante simulaciones
permite descubrir estados estables y recurrentes que no son evidentes en análisis menos pro-
fundos.

En consecuencia, el cuadro 4.3 constituye una evidencia cuantitativa robusta que apoya
esta interpretación, evidenciando que la inclusión de perturbaciones y el aumento del número
de simulaciones por subconjunto ampĺıan la diversidad de estados estructurales observados y
afectan la estabilidad relativa de las configuraciones persistentes de la comunidad ecológica
en estudio.

Además, por un lado, se observa que la introducción de perturbaciones promueve la con-
solidación de estados más complejos y completos, reflejando un efecto estabilizador en la
estructura ecosistémica. Por otro lado, abstracciones secundarias (Lf2 y Lf3) muestran menor
frecuencia, especialmente bajo perturbación, lo que sugiere una menor resiliencia de estos es-
tados frente a fluctuaciones externas.

En conjunto, esta distribución de abstracciones muestra la capacidad del sistema para
mantener configuraciones estables y complejas a pesar de variaciones y perturbaciones. Aśı
como de colapsar a solo una especie, situación que no evidenciamos en la exploración estructu-
ral, enfatizando la importancia del muestreo estad́ıstico amplio (mayor M) para caracterizar
adecuadamente la dinámica estructural de la comunidad ecológica.

Cuadro 4.4: Comparativa de Distribución porcentual de abstracciones finales más frecuentes
por cantidad de subconjuntos generados para simulaciones entre sistema sin perturbación
(No) y con perturbación (Śı). Cálculos obtenidos en Python™ (ver Apéndice A.2).

Lf Especies
no nativas

M = 1.000 M = 2.000 M = 3.000 M = 4.000 M = 5.000

Lf1
No 79, 15 % 56, 50 % 68, 26 % 55, 81 % 91, 57 %

Śı 86, 36 % 97, 98 % 95, 46 % 98, 15 % 99, 53 %

Lf2
No 18, 42 % 42, 28 % 31, 60 % 43, 08 % 8, 36 %

Śı 7, 45 % 1, 26 % 3, 94 % 1, 76 % 0, 26 %

Lf3
No 0, 17 % 0, 59 % 0, 14 % 0, 55 % 0, 05 %
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Lf Especies
no nativas

M = 1.000 M = 2.000 M = 3.000 M = 4.000 M = 5.000

Śı 4, 90 % 0, 61 % 0, 40 % 0, 02 % 0, 03 %

La distribución porcentual presentada en esta tabla verifica la tendencia observada en las
frecuencias absolutas. La alta participación relativa de las abstracciones Lf1 reafirma su papel
como configuraciones dominantes y resilientes, con una clara intensificación de su prevalencia
en el sistema perturbado.

Por el contrario, las abstracciones Lf2 y Lf3 mantienen una proporción mucho menor y
fluctuante, lo cual es consistente con su menor estabilidad observada, particularmente cuando
el sistema se encuentra sujeto a perturbaciones. Este comportamiento enfatiza la sensibilidad
diferencial de las configuraciones menos complejas a cambios estructurales y ambientales.

En consecuencia, la convergencia progresiva de las distribuciones porcentuales al aumentar
M indica la estabilidad estad́ıstica de los resultados y la validez de las inferencias obtenidas
sobre la dinámica de la comunidad ecológica.

Finalmente, como se anticipó en la sección ??, en la siguiente sección se procederá a
cuantificar la sostenibilidad de la comunidad ecológica RN IN . Para ello, se emplea la matriz
de transición de Markov construida mediante simulaciones implementadas en Python™ (ver
Apéndice A.2). Esta matriz captura las probabilidades de persistencia y transición entre las
abstracciones finales más frecuentes, evaluadas tanto en escenarios sin perturbación como
bajo la influencia de perturbaciones estructurales. De manera complementaria, realizamos las
exploraciones estructurales y dinámicas de la misma manera que en este apartado.

4.3. La sostenibilidad de la comunidad ecológica RN IN

En esta sección se presenta el análisis detallado de la cuantificación de la sostenibilidad
de la comunidad ecológica modelada mediante RN IN . La sostenibilidad se entiende como la
capacidad del sistema para mantener sus configuraciones estructurales predominantes frente
a perturbaciones internas y externas. Utilizando la matriz de transición de Markov derivada
de las simulaciones numéricas, se evalúan las probabilidades de permanencia de las abstrac-
ciones más significativas, proporcionando una métrica cuantitativa que refleja la resiliencia y
estabilidad dinámica de la comunidad ecológica. Este enfoque permite identificar qué estados
estructurales presentan mayor robustez y cuáles son más susceptibles a cambios, aportando
una visión profunda sobre la dinámica de persistencia en comunidades ecológicas complejas.

Para profundizar en la caracterización de la sostenibilidad del sistema, se analizan a con-
tinuación las probabilidades de permanencia y transición entre las abstracciones estructurales
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obtenidas en las simulaciones. Este análisis se basa en la matriz de transición de Markov, que
sintetiza la dinámica estocástica del sistema al considerar tanto la variabilidad interna como
la influencia de perturbaciones externas.

Mediante esta matriz, se pueden identificar los estados estructurales que actúan como
atractores estables, es decir, aquellos con alta probabilidad de auto-permanencia, aśı como los
patrones de transición hacia otros estados, lo cual aporta información clave sobre la resiliencia
del ecosistema y su capacidad de recuperación ante alteraciones.

A continuación, se presentan los resultados cuantitativos y gráficos derivados de este análi-
sis, seguidos de una interpretación detallada que vincula la estabilidad estructural con las
condiciones ecológicas modeladas por la red RN IN .
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Exploración estructural

Cuadro 4.5: Comparativa de matrices de transición de Markov. Cálculos obtenidos en Python™ (ver Apéndice A.2).

Especies
no na-
tivas

N = 25 N = 50 N = 75

No

Śı

En el cuadro 4.5 se incluyen las gráficas correspondientes a las matrices de transición de Markov para las abstrac-
ciones finales más frecuentes. Este análisis permite visualizar las frecuencias relativas de las especies en los subconjuntos
considerados para evaluar la sostenibilidad dentro del modelo de comunidad ecológica.
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Además, el Cuadro 4.6 sintetiza la estabilidad relativa de los estados estructurales re-
presentados por las abstracciones finales más frecuentes (Lf) a través de la probabilidad de
permanencia en cada estado. Los resultados evidencian que, para la abstracción más frecuente
(Lf1), la probabilidad de mantenerse estable es prácticamente uno en todos los casos, tanto
sin perturbación como bajo perturbación, lo que indica un alto nivel de resiliencia estructural.
En contraste, las abstracciones Lf2 y Lf3 muestran probabilidades de permanencia menores
y mayor variabilidad, especialmente bajo perturbaciones, sugiriendo una menor estabilidad
y mayor susceptibilidad a la transición hacia otros estados. Se destaca que, la abstracción
Lf3 presenta una probabilidad de permanencia nula en sistemas sin perturbación, pero signi-
ficativa bajo perturbación, lo que sugiere que la dinámica inducida por perturbaciones puede
activar estados estructurales que no se manifiestan en condiciones normales.

Cuadro 4.6: Comparativa de estabilidad de estados por probabilidad de permanencia en Lf
entre sistema sin perturbación (No) y con perturbación (Śı). Cálculos obtenidos en Python™
(ver Apéndice A.2).

Lf Especies no
nativas

N = 25 N = 50 N = 75

Lf1
No 0, 996 0, 999 0, 998

Śı 1, 000 1, 000 1, 000

Lf2
No 0, 993 0, 989 0, 976

Śı 0, 966 0, 913 0, 964

Lf3
No 0, 00 0, 00 0, 00

Śı 0, 916 0, 174 0, 936

Este conjunto de resultados aporta evidencia cuantitativa sobre la dinámica de persistencia
y transición de configuraciones estructurales en la comunidad ecológica modelada, remarcan-
do la importancia de incorporar perturbaciones para comprender la diversidad y estabilidad
de los estados ecosistémicos.

En relación con las matrices de transición de Markov, estas visualizaciones permiten identi-
ficar con claridad los estados estructurales que actúan como atractores estables -representados
por altos valores en la diagonal principal- y los patrones de transición más probables entre
diferentes estados del sistema. La comparación visual entre los escenarios sin y con pertur-
bación destaca cómo las perturbaciones pueden modificar significativamente la dinámica de
transición, promoviendo la exploración de nuevos estados y aumentando la diversidad estructu-
ral. Aśı, las matrices de transición constituyen una herramienta visual y anaĺıtica fundamental
para interpretar la resiliencia y adaptabilidad de la comunidad ecológica bajo estudio.

112



Exploración Dinámica

Cuadro 4.7: Comparativa de matrices de transición de Markov. Cálculos obtenidos en Python™ (ver Apéndice A.2).

Especies
no na-
tivas

M = 1.000 M = 2.000 M = 3.000

No

Śı
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Cuadro 4.8: Continuación de Comparativa de matrices de transición de Markov. Cálculos obtenidos en Python™ (ver
Apéndice A.2).

Especies
no na-
tivas

M = 4.000 M = 5.000

No

Śı

En los Cuadros 4.7 y 4.8 se incluyen las gráficas correspondientes a las matrices de transición de Markov para
las abstracciones finales más frecuentes. Este análisis permite visualizar las frecuencias relativas de las especies en los
subconjuntos considerados para evaluar la sostenibilidad dentro del modelo de comunidad ecológica.
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El Cuadro 4.9 sintetiza la estabilidad de las abstracciones estructurales más frecuentes en
términos de la probabilidad de permanencia para escenarios sin perturbación y con perturba-
ción. Los resultados muestran que la abstracción predominante Lf1 mantiene una probabilidad
de permanencia cercana a uno en todos los casos analizados, tanto en ausencia como en presen-
cia de perturbaciones, evidenciando su carácter como un estado altamente estable y resiliente.

La abstracciones secundarias (Lf2) presentan también elevadas probabilidades de perma-
nencia en ambos escenarios, con una ligera reducción bajo perturbación, especialmente al
aumentar M , lo que indica una sensibilidad moderada a las perturbaciones estructurales. Por
su parte, la abstracción Lf3 exhibe una probabilidad nula de permanencia en sistemas sin
perturbación, mientras que bajo perturbación adquiere valores altos para valores pequeños y
medianos de M , aunque con una cáıda notable para M = 4 000 y 5 000. Esto sugiere que la
dinámica inducida por perturbaciones favorece la activación y estabilidad de configuraciones
que no emergen en condiciones normales, pero que su permanencia puede verse afectada por
la intensidad y número de simulaciones.

Cuadro 4.9: Comparativa de estabilidad de estados por probabilidad de permanencia en Lf
entre sistema sin perturbación (No) y con perturbación (Śı). Cálculos obtenidos en Python™
(ver Apéndice A.2).

Lf Especies
no nativas

M = 1.000 M = 2.000 M = 3.000 M = 4.000 M = 5.000

Lf1
No 0, 998 0, 988 0, 989 0, 989 1, 000

Śı 1, 000 1, 000 1, 000 1, 000 1, 000

Lf2
No 0, 976 0, 989 0, 985 0, 990 0, 994

Śı 0, 964 0, 966 0, 975 0, 982 0, 679

Lf3
No 0, 000 0, 000 0, 000 0, 000 0, 000

Śı 0, 936 0, 943 0, 908 0, 250 0, 295

Las matrices de transición visualizadas en los Cuadros 4.7 y 4.8 complementan esta in-
terpretación, permitiendo observar claramente los atractores estables (valores elevados en
diagonal) y las transiciones más probables entre estados. La comparación entre escenarios
sin y con perturbación explicita cómo las perturbaciones modifican la dinámica del sistema,
promoviendo una mayor diversidad estructural y exploración del espacio de fases.

Estos hallazgos enfatizan la necesidad de considerar tanto la dinámica interna como los
efectos de perturbaciones para entender la sostenibilidad, estabilidad y adaptabilidad de co-
munidades ecológicas complejas modeladas mediante redes de reacciones.
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Conclusiones sobre la exploración estructural y dinámica
Los análisis realizados a través de las exploraciones estructural y dinámica proporcionan

una visión complementaria y enriquecedora sobre la sostenibilidad y estabilidad de la comu-
nidad ecológica modelada mediante la red de reacciones RN IN en conjunto a la variabilidad
estocástica y perturbaciones consideradas.

Por un lado, la exploración estructural permitió identificar abstracciones o configuraciones
estructurales predominantes (Lf) que representan conjuntos de especies activas con diferentes
grados de complejidad. Se evidenció que las abstracciones más frecuentes presentan una alta
persistencia en el sistema, especialmente bajo condiciones sin perturbación, lo que sugiere la
existencia de estados estructurales robustos que sostienen la dinámica del ecosistema.

Por otro lado, la exploración dinámica reveló una mayor diversidad de comportamientos y
la aparición de nuevos atractores en el espacio de fases, no evidentes en el análisis estructural.
En particular, la dinámica bajo perturbación mostró que ciertos estados estructurales secun-
darios, que no son estables en condiciones sin perturbación, pueden adquirir estabilidad y
persistencia significativa, remarcando la importancia de las perturbaciones para la activación
y mantenimiento de configuraciones alternativas del sistema.
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Caṕıtulo 5

Consideraciones finales

5.1. Recomendaciones para otros estudios
A partir del desarrollo y análisis realizado sobre la sostenibilidad de la comunidad ecológi-

ca modelada mediante red de reacciones, se identifican varias ĺıneas de recomendación para
futuros estudios en modelamiento estructural y dinámico de comunidades ecológicas comple-
jas:

1. Integración de enfoques estructurales y dinámicos: La combinación de análisis
estructurales de abstracciones con simulaciones dinámicas estocásticas para capturar
tanto la robustez estructural como la respuesta dinámica frente a perturbaciones se
vuelve fundamental. Esta integración facilita la identificación de atractores estables y la
evaluación de persistencia en distintos escenarios.

2. Exploración detallada de perturbaciones: Es fundamental incorporar diferentes
tipos y magnitudes de perturbaciones, tanto internas como externas, para evaluar su
impacto en la estabilidad y persistencia de las configuraciones ecológicas. La modela-
ción de perturbaciones estructurales permite revelar estados alternativos y dinámicas
emergentes no evidentes en condiciones ideales.

3. Escalabilidad y parámetros de simulación: El análisis mostró que la cantidad de
simulaciones por subconjunto y el tamaño de los subconjuntos influyen significativamen-
te en la identificación de estados y su estabilidad. Se recomienda realizar estudios de
sensibilidad rigurosos respecto a estos parámetros para garantizar resultados robustos
y reproducibles.

4. Aplicabilidad a en comunidades ecológicas reales: Se sugiere extender la meto-
doloǵıa contrastando con datos emṕıricos para validar el modelo y ajustar parámetros.
La incorporación de heterogeneidad espacial y temporal, junto con la consideración de
interacciones más complejas, para mejorar la precisión y utilidad del modelo.
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5. Uso de herramientas computacionales especializadas: El empleo de bibliotecas
especializadas, como pyCOT, ha demostrado ser eficaz para el análisis de redes de reac-
ciones y dinámica estructural. Se recomienda la continua actualización y optimización
de estas herramientas para facilitar la aplicación de estos métodos en estudios ecológicos
interdisciplinarios.

6. Análisis multiescalar y multivariado: Finalmente, se propone investigar la influen-
cia de procesos en distintas escalas temporales y espaciales, aśı como la incorporación de
múltiples factores ambientales y biológicos que modulen las interacciones, para compren-
der mejor la dinámica global y la sostenibilidad de la comunidad ecológica en estudio.

Estas recomendaciones buscan orientar futuras investigaciones hacia una modelación cada
vez más integral y robusta de comunidades ecológicas complejas, promoviendo el entendimien-
to profundo de la sostenibilidad y la resiliencia en contextos cambiantes.

5.2. Evaluación de las implicaciones del estudio
La implementación de la matriz de transición de Markov utilizada en la exploración dinámi-

ca facilitó cuantificar la sostenibilidad de cada abstracción de la comunidad ecológica real
RN IN mediante la probabilidad de permanencia, destacando que las configuraciones más
complejas mantienen alta estabilidad aun frente a perturbaciones. Estas observaciones refuer-
zan la hipótesis de que la sostenibilidad en comunidades ecológicas es un fenómeno multidi-
mensional, dependiente no solo de la estructura fija de las comunidades sino también de su
dinámica y respuesta a perturbaciones externas e internas.

En conjunto, los resultados, de las exploraciones estructurales y dinámicas, evidencian
que la integración de análisis estructurales con simulaciones dinámicas es fundamental para
comprender la complejidad y robustez de comunidades ecológicas, aportando herramientas
cuantitativas que permiten identificar configuraciones estables y predecir la evolución de las
comunidades frente a escenarios variables y con perturbaciones.

5.3. Vinculación de los resultados con investigaciones existen-
tes

Los resultados obtenidos en este estudio se alinean y complementan investigaciones pre-
vias que han aplicado la teoŕıa de redes y modelos dinámicos para el análisis de comunidades
ecológicas complejas. En particular, la identificación de abstracciones estables mediante redes
de reacciones y matrices de transición de Markov está en concordancia con trabajos que han
enfatizado la importancia de la estructura y dinámica conjunta para comprender la resiliencia
y persistencia en sistemas ecológicos (Veloz and Flores, 2021a,b).
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Además, la evidencia de que perturbaciones estructurales pueden, en ciertos casos, fa-
vorecer la estabilidad o generar nuevos estados estables, coincide con hallazgos recientes en
ecoloǵıa teórica y estudios de dinámica poblacional, que resaltan la dualidad de las pertur-
baciones como factores tanto disruptivos como estabilizadores, dependiendo del contexto y la
escala temporal (Oliver and Higashi, 2019; Guo et al., 2017).

Por otro lado, el reconocimiento de limitaciones relacionadas con la modelación espacial
expĺıcita abre un diálogo con trabajos que integran heterogeneidad espacial y dinámica tem-
poral para explicar patrones complejos en ecosistemas reales. Nuestro enfoque contribuye a
esta ĺınea, proponiendo un marco formal que puede ser extendido para incorporar espacialidad
con mayor detalle (Veloz and Flores, 2021a).

En śıntesis, esta investigación no solo valida conceptos teóricos existentes, sino que aporta
nuevos enfoques metodológicos que ampĺıan la comprensión de las dinámicas estructurales y
funcionales en comunidades ecológicas con interacciones complejas y perturbaciones, ofrecien-
do una base sólida para futuros desarrollos en modelamiento ecológico y gestión ambiental.

5.4. Limitaciones de la investigación
Una limitación significativa durante el desarrollo de esta investigación fue la condición in-

completa de la libreŕıa pyCOT al momento de realizar el estudio. En particular, no contar con
el módulo de cálculo de las organizaciones del sistema RN IN limitó el análisis estructural
profundo del modelo. En consecuencia, se optó por trabajar con abstracciones derivadas, lo
cual, si bien permitió avanzar en la caracterización dinámica y la evaluación probabiĺıstica
mediante matrices de transición de Markov, restringió el espectro anaĺıtico al no disponer de la
información completa sobre la organización estructural y funcional del sistema. Es razonable
suponer que disponer del cálculo exacto de las organizaciones habŕıa ampliado la capacidad
para identificar y comprender configuraciones estructurales cŕıticas de la comunidad ecológica,
enriqueciendo la interpretación ecológica y la precisión de las predicciones.

Asimismo, el modelo actual no incorpora expĺıcitamente la heterogeneidad espacial, un
factor conocido por influir decisivamente en la dinámica y resiliencia de comunidades ecológi-
cas. La inclusión de modelación espacial, aśı como la consideración de procesos temporales
más detallados (por ejemplo, ciclos estacionales o fluctuaciones ambientales), podŕıa ofrecer
una visión más realista y robusta de la sostenibilidad del sistema.

Adicionalmente, la dependencia de parámetros cinéticos estimados y la representación
discreta de las especies en abstracciones pueden introducir sesgos o limitaciones en la ge-
neralización de los resultados, especialmente cuando se pretende extrapolar a comunidades
ecológicas reales con complejidades adicionales no consideradas en el modelo.
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Por último, aunque el enfoque computacional utilizado es potente para explorar la dinámi-
ca probabiĺıstica, la alta demanda computacional impone ĺımites prácticos en la exploración
exhaustiva del espacio de estados, especialmente al aumentar el número de especies o la
complejidad de las interacciones. Esto sugiere que futuros desarrollos debeŕıan incorporar op-
timizaciones algoŕıtmicas o métodos aproximados para mejorar la escalabilidad y aplicabilidad
a comunidades ecológicas más amplias, y explotar el potencial de implementación en sistemas
cada vez más complejos como los sistemas socio-ecológicos.

En consecuencia, estas limitaciones destacan oportunidades para el perfeccionamiento me-
todológico y la expansión del marco conceptual, que permitirán avanzar en la comprensión
integral de la sostenibilidad en comunidades ecológicas complejas.

5.5. Importancia y significado de la investigación
La presente investigación aporta un avance significativo en el modelamiento y análisis de

comunidades ecológicas con interacciones complejas, mediante la aplicación y desarrollo de
herramientas basadas en redes de reacciones y análisis estructural y dinámico. Aunque el es-
tudio se ha focalizado en una comunidad ecológica espećıfica, el enfoque metodológico y los
resultados obtenidos tienen implicancias mucho más amplias para la comprensión de sistemas
ecológicos complejos en general.

El modelamiento a través de redes de reacciones permite representar de manera integrada
las múltiples interacciones bióticas, incluyendo relaciones simbióticas, parasitarias y com-
petitivas, que caracterizan a las comunidades ecológicas reales. La combinación de análisis
estructural con simulaciones dinámicas estocásticas facilita la identificación de configuracio-
nes estables (abstracciones) y la evaluación de su resiliencia ante perturbaciones, aspectos
fundamentales para entender la sostenibilidad ecosistémica.

La formulación y aplicación del enfoque multiescalar y probabiĺıstico presentado ofrecen
un marco teórico y computacional robusto para explorar la dinámica y evolución de comunida-
des con alta complejidad funcional y estructural. Esto es especialmente relevante en contextos
actuales de cambio ambiental acelerado y creciente impacto de las distintas actividades que
desarrolla el ser humano, donde la capacidad de los ecosistemas para mantener sus funciones
esenciales depende cŕıticamente de la estabilidad y adaptabilidad de sus interacciones internas.

Además, el método desarrollado contribuye a la superación de limitaciones tradicionales
en el estudio de redes ecológicas, al integrar expĺıcitamente la heterogeneidad temporal, me-
diante la dinámica y simulaciones estocásticas, y la heterogeneidad espacial, conceptualmente
al utilizar el marco de modelación de red de reacciones, con posibilidad de inclusión expĺıcita
en desarrollos futuros. Por lo que, permite una cuantificación expĺıcita de la sostenibilidad a
partir de la matriz de transición de Markov. Este enfoque es aplicable y extensible a diversos
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sistemas biológicos complejos, desde comunidades microbianas hasta ecosistemas terrestres
y acuáticos, brindando una herramienta valiosa para la investigación interdisciplinaria y la
toma de decisiones en conservación y manejo ambiental.

En resumen, esta investigación no solo fortalece el entendimiento cient́ıfico de la dinámi-
ca y sostenibilidad en comunidades ecológicas con interacciones complejas, sino que también
establece un puente metodológico entre la teoŕıa matemática, la computación y la ecoloǵıa
aplicada, con la posibilidad de abrir nuevas v́ıas para la exploración, modelamiento y conser-
vación de la biodiversidad en ecosistemas reales.

5.6. Resultados inesperados
Durante el desarrollo del análisis estructural y dinámico de la comunidad ecológica RN IN ,

se identificaron varios hallazgos inesperados que aportan una visión más profunda y compleja
sobre la dinámica y sostenibilidad del sistema, y que abren nuevas ĺıneas de investigación.

En primer lugar, se observó que la exploración dinámica, realizada mediante simulaciones
estocásticas y la construcción de matrices de transición de Markov, reveló la presencia de
atractores y configuraciones estables (abstracciones) que no fueron evidentes en el análisis pu-
ramente estructural. Este hallazgo sugiere que la dinámica temporal y los procesos estocásticos
pueden inducir comportamientos emergentes que no se anticipan únicamente a partir de la
estructura de la red de interacciones, lo que resalta la importancia de combinar ambas pers-
pectivas para una comprensión integral del sistema.

Igualmente, se detectó un fenómeno contraintuitivo en la respuesta del sistema a las per-
turbaciones estructurales debido a que, algunas abstracciones que mostraban baja o nula
estabilidad en el sistema sin perturbación incrementaron notablemente su probabilidad de
permanencia cuando se introdujeron perturbaciones controladas. Este resultado indica que la
presencia de perturbaciones puede facilitar la emergencia o estabilización de nuevas configu-
raciones ecológicas, evidenciando un efecto potencialmente estabilizador o modulador de la
resiliencia en comunidades ecológicas complejas.

Adicionalmente, el comportamiento contextual de la respuesta a la variación en la cantidad
de simulaciones realizadas (M) fue un aspecto inesperado. Se observó que el incremento en el
número de simulaciones no siempre se traduce en una mayor estabilidad o frecuencia consis-
tente de ciertos estados, mostrando fluctuaciones y desviaciones que implican una complejidad
inherente en la convergencia estad́ıstica del modelo. Este hallazgo sugiere la necesidad de un
análisis más detallado sobre la sensibilidad a los parámetros de simulación y la robustez de
los resultados.
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Finalmente, destacamos la limitación actual del modelo en la incorporación expĺıcita de la
heterogeneidad espacial. Aunque la estructura y dinámica del sistema consideran elementos
conceptuales relacionados con la distribución espacial, la ausencia de una modelación espa-
cial expĺıcita restringe la capacidad de capturar ciertos procesos ecológicos relevantes, lo que
constituye una oportunidad importante para futuras investigaciones.

En conclusión, estos resultados inesperados no solo enriquecen el análisis realizado, sino que
también remarcan la complejidad inherente de las comunidades ecológicas con interacciones
complejas y la necesidad de enfoques integrales que combinen análisis estructurales, dinámicos
y espaciales para una comprensión más completa y realista de la sostenibilidad ecológica.
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Apéndice A

Apéndice

A.1. Script de Python™ para la simulación numérica del mo-
delo RN AEP con la inclusión de perturbaciones

A continuación, presentamos el Script desarrollado, que toma como base la libreŕıa py-
COT, para simular la dinámica del modelo RN AEP bajo condiciones de perturbación. El
código utiliza el método de Euler expĺıcito para calcular la evolución temporal de las especies
y aplica perturbaciones controladas, permitiendo analizar su impacto en la estabilidad del
sistema.

#########################################################################
####Simulación numérica de modelos RN con inclusión de perturbaciones####
#########################################################################

# Import necessary libraries and modules
import os
import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.integrate import odeint

# Add the root directory to the PYTHONPATH
sys.path.append(os.path.dirname(os.path.dirname
(os.path.abspath(__file__))))
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# Import the necessary modules from pyCOT
from pyCOT.io.functions import read_txt
from pyCOT.plot_dynamics import plot_series_ode
from pyCOT.simulations import simulation, rate_ping_pong

# Configuración inicial
file_path = ’Txt/RN_AEP_05.txt’
# RN_AEP_05.txt corresponde a la últiva versión de RN_AEP
rn = read_txt(file_path)
species = list(rn.stoichiometry_matrix().species)
# Convertir a lista explı́cita
reactions = rn.stoichiometry_matrix().reactions

rate_list = [’mak’] * len(reactions)

# Definición de Condiciones iniciales:

# Vector de Condiciones iniciales para Concentraciones x0
x0 = [16.0, 0.0, 15.0, 1.0, 0.0, 0.0, 0.0]

#Parámetros empı́ricos ecológicos
e = 0.01
h = 250
m = 1000

#Vector de Condiciones iniciales para constantes de reacción k_i
spec_vector = [[1/8], [0.9/10], [0.1/10], [1/8], [1/h], [1/h],

[1/(h*e)], [1/(h*e)],[0.01/10], [0.99/10], [0.99/10],
[0.01/10], [1/m], [1/m], [1/m], [1/m], [100/(h*e)]]

# Función para simular con control de estabilidad
def simulate_ode(x0, t_span):

additional_laws = {’ping_pong’: rate_ping_pong}
try:

time_series, _ =
simulation(rn, rate=rate_list, spec_vector=spec_vector,

x0=x0, t_span=t_span, n_steps=1000)
except RuntimeWarning as e:

print("Error de simulación: ", str(e))
return None
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if (np.isnan(time_series).any().any())
or (np.isinf(time_series).any().any()):
print("Error: La simulación contiene valores NaN o infinitos.")
return None

return pd.DataFrame(time_series, columns=["Time"] + species)

# Definición del punto de intervención y la perturbación
tp_list = [20] # Puntos de intervención
add_concentration_p = 15 # Concentración a sumar para P

# Simulación inicial hasta la primera intervención
time_series_combined = pd.DataFrame()
current_time = 0

for tp in tp_list:
# Simulación hasta el tiempo de intervención
time_series_partial = simulate_ode(x0.copy(), (current_time, tp))
time_series_combined = pd.concat([time_series_combined,
time_series_partial], ignore_index=True)

# Aplicar la perturbación solo a la especie P
species_dict = {s.strip(): i for i, s in enumerate(species)}
if "P" in species_dict and species[species_dict["P"]] == "P":

x0[species_dict["P"]] += add_concentration_p

current_time = tp

# Simulación final desde el último punto de intervención hasta el final
time_series_final = simulate_ode(x0.copy(), (current_time, 100))
time_series_combined = pd.concat([time_series_combined, time_series_final]
, ignore_index=True)

# Gráfica de resultados en formato plot_series_ode
def plot_series_ode_p(time_series, xlabel="Time", ylabel="Concentration",
title="Time Series of Concentrations with Perturbations", show_grid=True):

if ’Time’ not in time_series.columns:
raise ValueError("The DataFrame must include a ’Time’
column for time values.")
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fig, ax = plt.subplots(figsize=(10, 6))
for species in time_series.columns:

if species != ’Time’:
ax.plot(time_series[’Time’], time_series[species],
label=species)

ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_title(title)
ax.grid(show_grid)
ax.legend()

plt.tight_layout()
plt.show()

# Función de pyCOT ajustada para obtener gráfica en mismo formato
plot_series_ode_p(time_series_combined)

A.2. Script de Python™ para la cuantificación de la sosteni-
bilidad en comunidades ecológicas reales

A continuación, presentamos el Script desarrollado para simular la dinámica estructural
de abstracciones dentro de una comunidad ecológica real, utilizando redes de reacciones. Este
código se enfoca en la transición de estados en una comunidad ecológica representada por
abstracciones, las cuales son colecciones de especies que interactúan entre śı.

#########################################################################
#############Cálculo de matriz de transición de Markov ##################
##############y conteo de abstracciones por subconjunto##################
#########################################################################

# Este script implementa un análisis de redes de reacciones utilizando
# principios de la teorı́a de conjuntos y cadenas de Markov. El objetivo
# principal es estudiar la dinámica de sistemas biológicos complejos
# mediante la generación y análisis de subconjuntos aleatorios de especies,
# permitiendo identificar patrones emergentes y comportamientos colectivos
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# en redes de reacciones.

# Import necessary libraries and modules
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter, defaultdict
import pandas as pd
from scipy.interpolate import make_interp_spline, BSpline

# Configuración del entorno de trabajo y definición de rutas para acceder
# a los módulos personalizados. Esta sección establece la estructura
# de directorios necesaria para la correcta ejecución del algoritmo,
# garantizando que todas las dependencias estén disponibles
# independientemente del punto de entrada al script.
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(ROOT_DIR)

# Importación de módulos personalizados de la biblioteca pyCOT (Python
# Chemical Organization Theory), que proporciona herramientas
# especializadas para el análisis de redes de reacciones,
# simulaciones dinámicas y visualización de resultados.
from pyCOT.io.functions import read_txt
from pyCOT.plot_dynamics import plot_series_ode
from pyCOT.simulations import *

### Módulo de Inicialización y Carga de Datos

# Este módulo se encarga de cargar la red de reacciones desde un archivo
# de texto y establecer las condiciones iniciales para las simulaciones
# posteriores. La red de reacciones representa un sistema especı́fico
# que será objeto de análisis en este estudio.
file_path = os.path.join(ROOT_DIR, ’Txt’, ’RN_IN.txt’)
rn = read_txt(file_path)

# Extracción de la información estructural de la red de reacciones,
# incluyendo las especies participantes y las reacciones que las conectan.
# Esta información es fundamental para construir la matriz estequiométrica
# que describe matemáticamente las transformaciones quı́micas en el sistema.
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species = rn.stoichiometry_matrix().species
reactions = rn.stoichiometry_matrix().reactions

# Definición de las condiciones iniciales para la simulación dinámica del
# sistema. Se establece un vector de concentraciones iniciales uniformes
# para todas las especies y se especifica el tipo de cinética (ley de
# acción de masas - ’mak’) para todas las reacciones, junto con los
# coeficientes estequiométricos correspondientes.
x0 = [1.0] * len(species)
rate_list = [’mak’] * len(reactions)
spec_vector = [[1.0]] * len(reactions)

# Función de validación para vectores x0

# Esta función verifica que un vector x0 no tenga todas sus componentes
# en cero, lo que garantiza que siempre haya al menos una especie
# activa en cualquier configuración del sistema. Esta validación
# es esencial para evitar estadosbiológicamente irrelevantes
# y asegurar la validez matemática de las simulaciones.
def validar_x0_no_nulo(vector):

"""
Verifica que el vector x0 no tenga todas sus componentes en cero.

Args:
vector: Lista o array con los valores del vector x0

Returns:
bool: True si el vector tiene al menos un valor distinto de cero,
False en caso contrario

"""
return any(v != 0 for v in vector)

### Módulo de Selección Interactiva de Especies

# Este módulo implementa una interfaz de usuario para la selección manual
# de especies de interés. Permite al investigador enfocar el análisis en
# subconjuntos especı́ficos de especies basados en conocimiento experto
# o hipótesis particulares sobre el sistema estudiado.
species_incluidas = []
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# Proceso iterativo de consulta al usuario para cada especie identificada
# en la red. Este enfoque interactivo combina el análisis computacional con
# el criterio experto del investigador, enriqueciendo la interpretación
# biológica de los resultados matemáticos.
print("\nSeleccione manualmente las especies que desea incluir para la
generación de subconjuntos:")
for sp in species:

while True:
respuesta = input(f"¿Incluir especie ’{sp}’? (Y/N): ").strip().
upper()
if respuesta == ’Y’:

species_incluidas.append(sp)
break

elif respuesta == ’N’:
break

else:
print("Respuesta no válida. Escriba ’Y’ o ’N’.")

# Confirmación visual de las especies seleccionadas para verificar la
# correcta configuración del análisis antes de proceder con las
# simulaciones.
print(f"\n Especies seleccionadas para la generación de subconjuntos:")
print(species_incluidas)

# Validación de la selección para evitar análisis sin sentido biológico.
# Si no se selecciona ninguna especie, el algoritmo termina su ejecución,
# ya que no habrı́a subconjuntos significativos para analizar.
if not species_incluidas:

print(" No se seleccionó ninguna especie. Abortando ejecución.")
sys.exit(1)

# Creación del vector x0 inicial para las especies seleccionadas, donde 1
# indica presencia (especie seleccionada) y 0 ausencia (especie
# no seleccionada). Este vector servirá como base para la generación
# de subconjuntos y análisis posterior.
x0_especies_seleccionadas = [1 if sp in species_incluidas else 0 for sp
in species]

# Visualización del vector x0 de especies seleccionadas con sus etiquetas
# correspondientes, facilitando la interpretación biológica del
# estado inicial del sistema.
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print("\n Vector x0 de especies seleccionadas con etiquetas:")
for sp, valor in zip(species, x0_especies_seleccionadas):

estado = "ACTIVA" if valor == 1 else "inactiva"
print(f"{sp}: {estado}")

# Visualización del vector x0 de especies seleccionadas en formato
# binario, proporcionando una representación matemática compacta
# del estado inicial.
# print("\n Vector x0 de especies seleccionadas en binario:")
print(x0_especies_seleccionadas)

### Módulo de Generación de Subconjuntos Aleatorios

# Este módulo implementa un algoritmo estocástico para la generación de
# múltiples subconjuntos de especies, utilizando únicamente las especies
# seleccionadas como activas. Utiliza un modelo probabilı́stico
# binomial para simular diferentes estados iniciales del sistema,
# permitiendo explorar el espacio de estados posibles
# de manera sistemática pero aleatoria.
N = 25 # Número de subconjuntos a generar
p = 0.5 # Probabilidad de inclusión de cada especie en un subconjunto

# Proceso de generación de subconjuntos mediante muestreo aleatorio,
# considerando únicamente las especies seleccionadas como activas.
# Cada subconjunto representa una posible configuración inicial del
# sistema, donde algunas especies seleccionadas están presentes
# y otras ausentes.
subsets = []
# print("\n Generando subconjuntos aleatorios no nulos...")
while len(subsets) < N:

# Aplicación del modelo binomial para determinar la presencia (1) o
ausencia (0)
# de cada especie seleccionada en el subconjunto actual. Este enfoque
# probabilı́sticopermite explorar el espacio de configuraciones
# de manera eficiente.
mask = np.random.binomial(1, p, size=len(species_incluidas))

# Verificación de que el subconjunto no sea vacı́o (al menos una especie
# activa) para evitar configuraciones biológicamente irrelevantes.
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if any(mask == 1): # Asegura que al menos una especie esté activa
subset = [s for s, m in zip(species_incluidas, mask) if m == 1]
subsets.append(subset)

else:
# Si el subconjunto es vacı́o, activar una especie aleatoria para
# garantizar que no haya subconjuntos vacı́os.
idx = np.random.randint(0, len(species_incluidas))
subset = [species_incluidas[idx]]
subsets.append(subset)

# print(f" Se generaron {len(subsets)} subconjuntos no nulos.")

### Módulo de Codificación y Etiquetado de Subconjuntos

# Este módulo transforma los subconjuntos generados en representaciones
# vectoriales binarias adecuadas para el análisis matemático posterior.
# Además, crea etiquetas legibles para facilitar la interpretación
# biológica de los resultados.
x0_vectors = []
subset_labels = []

# Proceso de codificación de cada subconjunto como un vector binario donde
# 1 indica presencia y 0 ausencia de la especie correspondiente.
# Esta representación vectorial es compatible con los algoritmos de
# simulación dinámica y análisis de redes.
for subset in subsets:

# Creación del vector x0 completo para todas las especies, donde solo
# las especies seleccionadas y presentes en el subconjunto actual
# tendrán valor 1.
x0 = [1 if (sp in species_incluidas and sp in subset) else 0 for sp
in species]

# Verificación adicional para garantizar que el vector x0 no sea nulo
if validar_x0_no_nulo(x0):

x0_vectors.append(x0)
# Creación de etiquetas descriptivas que enumeran las especies
# presentes en cada subconjunto, facilitando la interpretación
# biológica de los resultados numéricos.
label = ’, ’.join(subset) if subset else "(ninguna)"
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subset_labels.append(label)
else:

continue
# print(f" Se descartó un vector x0 nulo durante la codificación.")

# Verificación final de que todos los vectores x0 generados son no nulos
print(f"\n Verificación: {len(x0_vectors)} vectores x0 generados, todos
no nulos.")

# Visualización de la lista de vectores x0 de los subconjuntos generados en
# formato binario, proporcionando una representación matemática de todos
# los estados iniciales considerados.
print("\n Lista de vectores x0 de los subconjuntos generados en binario:")
for i, x0 in enumerate(x0_vectors):

print(f"Subconjunto {i+1}: {x0}")

# Análisis estadı́stico de los subconjuntos generados para identificar
# patrones de co-ocurrencia y frecuencias de aparición. Esta información
# es valiosa para detectar configuraciones predominantes o raras en el
# espacio de estados.
conteo_labels = Counter(subset_labels)

### Módulo de Generación de Códigos para Subconjuntos y Abstracciones

# Este módulo implementa la generación de códigos únicos para cada
# subconjunto y abstracción, facilitando su identificación
# en gráficos y análisis. Los códigos proporcionan una representación
# compacta y estandarizada para la visualización y referencia en
# el contexto de la investigación biomatemática.

# Función para generar un código único a partir de un patrón binario.
# Esta función convierte un patrón binario en un código alfanumérico que
# representa de manera compacta la configuración de especies en el sistema.
def generate_binary_code(pattern):

# Conversión del patrón binario a una representación hexadecimal
# compacta que codifica la presencia/ausencia de especies en el
# sistema.
if all(v == 0 for v in pattern):

return "S0" # Código especial para el conjunto vacı́o
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# Convertir el patrón binario a un entero y luego a hexadecimal
binary_str = ’’.join(map(str, pattern))
decimal = int(binary_str, 2)
hex_code = hex(decimal)[2:].upper() # Eliminar ’0x’ y convertir a
mayúsculas

return f"S{hex_code}"

# Creación de un diccionario que mapea cada etiqueta de subconjunto a un
# código único. Este mapeo permite referenciar eficientemente
# los subconjuntos en visualizaciones y análisis, manteniendo la
# trazabilidad con las descripciones originales.
subset_codes = {}
subset_code_to_label = {}

# Generación de códigos para los subconjuntos iniciales.
for i, (label, x0) in enumerate(zip(subset_labels, x0_vectors)):

# Generación de un código único basado en el patrón binario del
# subconjunto.
code = f"S{i+1}"
subset_codes[label] = code
subset_code_to_label[code] = label

# Impresión del mapeo entre códigos y etiquetas para referencia.
print("\n Tabla de correspondencia entre códigos y subconjuntos:")
for code, label in subset_code_to_label.items():

print(f"{code}: {label}")

### Módulo de Visualización de Frecuencia de Aparición de Especies por
Subconjunto

# Este módulo implementa una nueva visualización que muestra la
# frecuencia de aparición de cada especie en los subconjuntos generados,
# permitiendo identificar patrones de distribución y co-ocurrencia
# entre las especies del sistema.

# Creación de una matriz de presencia/ausencia de especies en cada
# subconjunto Esta matriz servirá como base para el análisis de
# frecuencia de aparición
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especies_presencia = np.zeros((len(species_incluidas), len(x0_vectors)))

# Llenado de la matriz de presencia/ausencia
for j, subset in enumerate(subsets):

for i, sp in enumerate(species_incluidas):
if sp in subset:

especies_presencia[i, j] = 1

# Cálculo de la frecuencia de aparición de cada especie en los
# subconjuntos
frecuencia_especies = np.sum(especies_presencia, axis=1)

# Ordenamiento de especies por frecuencia de aparición (de mayor a menor)
indices_ordenados = np.argsort(-frecuencia_especies)
especies_ordenadas = [species_incluidas[i] for i in indices_ordenados]
frecuencias_ordenadas = frecuencia_especies[indices_ordenados]

# Generación de la gráfica de barras horizontal que muestra
# la frecuencia de aparición de cada especie en los subconjuntos
# generados, usando los nombres completos de las especies
bars = plt.barh(range(len(especies_ordenadas)), frecuencias_ordenadas,

tick_label=especies_ordenadas, color=’green’,
edgecolor=’black’)

# Mejora visual del gráfico con etiquetas de frecuencia junto a cada
# barra
for bar, freq in zip(bars, frecuencias_ordenadas):

plt.text(bar.get_width() + 0.5, bar.get_y() + bar.get_height()/2,
str(int(freq)), ha=’left’, va=’center’, fontweight=’bold’)

# sean completamente visibles
plt.subplots_adjust(left=0.3)

plt.xlabel("Número de subconjuntos")
plt.ylabel("Especies")
plt.title("Frecuencia de aparición de especies por subconjuntos")
plt.grid(axis=’x’)
plt.tight_layout()

plt.show()
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### Módulo de Selección de Especies para Reducción de Concentración

# Este módulo permite al usuario seleccionar especies cuyas
# concentraciones iniciales se dividirán por 10 antes de las
# simulaciones, simulando escenarios como la invasión de especies
# no nativas en una comunidad ecológica.

# Inicialización de la lista de especies con concentración reducida
especies_reducidas = []

print("\n Configuración de concentraciones iniciales para simulaciones:")
print(" Seleccione las especies cuya concentración inicial se dividirá
por 10.")
print(" Esto permite simular escenarios como la invasión de especies
no nativas.")

# Proceso iterativo de consulta al usuario para cada especie
for sp in species:

while True:
respuesta = input(f"¿Reducir concentración de ’{sp}’ por un
factor de 10? (Y/N): ").strip().upper()
if respuesta == ’Y’:

especies_reducidas.append(sp)
break

elif respuesta == ’N’:
break

else:
print("Respuesta no válida. Escriba ’Y’ o ’N’.")

# Confirmación visual de las especies seleccionadas para reducción de
# concentración
if especies_reducidas:

print(f"\n Especies con concentración reducida (factor 1/10):")
print(especies_reducidas)

else:
print("\n No se seleccionaron especies para reducción de
concentración.")

### Módulo de Simulaciones Dinámicas
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# Este módulo implementa la simulación numérica de la dinámica del
# sistema para múltiples condiciones iniciales, permitiendo
# explorar el comportamiento del sistema en diferentes regiones del
# espacio de estados y analizar patrones emergentes.

# Definición de parámetros para las simulaciones
M = 1000 # Número de simulaciones a realizar
additional_laws = {} # Leyes cinéticas adicionales (vacı́o por defecto)
umbral_minimo = 1e-20 # Umbral mı́nimo para la conversión binaria
(evita problemas numéricos)

# Inicialización de estructuras de datos para almacenar resultados
matrices_binarias = [] # Lista para almacenar las matrices binarias de
cada simulación
matrices_reales = [] # Lista para almacenar las matrices de
concentraciones reales
condiciones_iniciales = [] # Lista para almacenar las condiciones
iniciales de cada simulación

print("\n Iniciando módulo de simulaciones dinámicas...")
print(f" Realizando {M} simulaciones con extracción de los últimos 100
pasos...")

# Bucle principal de simulaciones
for i in range(M):

# Generación de condiciones iniciales aleatorias para cada simulación
# Se utiliza una distribución uniforme para explorar diferentes
# regiones del espacio de estados
x0_random = np.random.uniform(0, 1, size=len(species)).tolist()

# Aplicar reducción de concentración a las especies seleccionadas
for j, sp in enumerate(species):

if sp in especies_reducidas:
x0_random[j] /= 10.0 # Dividir la concentración por 10

# Verificación de que el vector x0 aleatorio no sea nulo
if not validar_x0_no_nulo(x0_random):

# Si es nulo, activar una especie aleatoria
idx = np.random.randint(0, len(species))
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x0_random[idx] = 1.0

# Almacenar las condiciones iniciales para análisis posterior
condiciones_iniciales.append(np.array(x0_random) > 0)

try:
# Simulación numérica de la dinámica del sistema utilizando el
# integrador proporcionado por la biblioteca pyCOT.
# Se especifica el intervalo de tiempo, el número de pasos
# y las leyes cinéticas adicionales.
time_series, _ = simulation(

rn, # Red de reacciones
rate=rate_list, # Lista de tipos de cinética
spec_vector=spec_vector, # Vectores de coeficientes
estequiométricos
x0=x0_random, # Condiciones iniciales aleatorias
t_span=(0, 100), # Intervalo de tiempo de simulación
n_steps=1000, # Número de pasos de integración
additional_laws=additional_laws # Leyes cinéticas
adicionales

)

# Extracción de los últimos 100 pasos de la simulación para
# analizar el comportamiento asintótico del sistema.
# Se considera que después de este tiempo el sistema ha
# alcanzado un estado estacionario o un comportamiento
# caracterı́stico.
matriz_real = time_series.iloc[-100:, 1:].values

# Conversión de las concentraciones reales a una representación
# binaria (presencia/ausencia) utilizando un umbral mı́nimo para
# evitar problemas numéricos
matriz_binaria = np.where(matriz_real > umbral_minimo, 1, 0)

# Almacenamiento de las matrices para análisis posterior
matrices_reales.append(matriz_real)
matrices_binarias.append(matriz_binaria)

# Mostrar progreso cada 100 simulaciones
if (i + 1) % 100 == 0:
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print(f" Completadas {i + 1}/{M} simulaciones
({(i + 1)/M*100:.1f}%)")

except Exception as e:
print(f" Error en simulación {i+1}: {str(e)}")
continue

print(f" Simulaciones completadas. Se obtuvieron datos de
{len(matrices_binarias)} simulaciones exitosas.")

### Módulo de Análisis de Frecuencias y Transiciones

# Este módulo implementa el análisis de frecuencias de los estados del
# sistema y las transiciones entre ellos, permitiendo identificar
# patrones emergentes y comportamientos colectivos en la dinámica del
# sistema.

print("\n Iniciando análisis de frecuencias y transiciones...")

# Conversión de matrices binarias a cadenas de texto para facilitar el
# conteo y la identificación de patrones únicos. Cada fila de cada
# matriz binaria representa un estado del sistema en un momento
# especı́fico.
L = [] # Lista única con todos los estados de todas las simulaciones

# Función para convertir un vector binario a una cadena de texto que
# lo represente unı́vocamente
def vector_to_string(vector):

return ’’.join(map(str, vector.astype(int)))

# Recopilación de todos los estados de todas las simulaciones en una
# única lista L
print(" Recopilando todos los estados de todas las simulaciones...")
for matriz in matrices_binarias:

for estado in matriz:
# Verificación adicional para garantizar que no se incluyan
# estados todo cero (aunque esto no deberı́a ocurrir debido a la
# corrección anterior)
estado_str = vector_to_string(estado)
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if ’1’ in estado_str: # Asegura que al menos una especie esté
# presente

L.append(estado_str)
else:

print(" Se detectó un estado todo cero.")

print(f" Se recopilaron {len(L)} estados en total.")

# Cálculo de frecuencias de cada estado único en la lista L
print(" Calculando frecuencias de cada estado único...")
frecuencias = Counter(L)
print(f" Se identificaron {len(frecuencias)} estados únicos.")

# Creación de la lista Lf con pares (estado, frecuencia)
Lf = [(estado, freq) for estado, freq in frecuencias.items()]

# Ordenamiento de la lista Lf por frecuencia (de mayor a menor)
Lf.sort(key=lambda x: x[1], reverse=True)

# Función para determinar el valor óptimo de n
def encontrar_n_optimo(Lf, umbral_prob=0.05):

"""
Encuentra el valor óptimo de n para que la probabilidad de transición
de ’otros a otros’ sea menor que el umbral especificado.

Args:
Lf: Lista de pares (estado, frecuencia) ordenada por frecuencia
umbral_prob: Umbral de probabilidad para la transición
’otros a otros’

Returns:
int: Valor óptimo de n

"""
total_estados = sum(freq for _, freq in Lf)

# Probar diferentes valores de n
for n in range(1, min(15, len(Lf))):

# Calcular la probabilidad de ’otros a otros’
estados_top_n = set(estado for estado, _ in Lf[:n])
transiciones_otros_a_otros = 0
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total_transiciones_desde_otros = 0

# Contar transiciones de ’otros a otros’
for i in range(len(L) - 1):

if L[i] not in estados_top_n: # Es un estado ’otros’
total_transiciones_desde_otros += 1
if L[i+1] not in estados_top_n:

transiciones_otros_a_otros += 1

# Calcular probabilidad
if total_transiciones_desde_otros > 0:

prob_otros_a_otros = transiciones_otros_a_otros /
total_transiciones_desde_otros
if prob_otros_a_otros < umbral_prob:

return n

return min(10, len(Lf))

# Determinar el valor óptimo de n
n = encontrar_n_optimo(Lf)
print(f"\n Valor óptimo de n determinado: {n}")

# Selección de los n estados más frecuentes
top_n = Lf[:n]

print(f"\n Los {n} estados más frecuentes son:")
for i, (estado, freq) in enumerate(top_n):

vector = np.array([int(bit) for bit in estado])
# Identificar qué especies están activas en este estado
especies_activas = [species[i] for i, bit in enumerate(vector)
if bit == 1]

print(f" Lf{i+1}: Estado ’{estado}’ (frecuencia: {freq},
{freq/len(L)*100:.2f}%)")
print(f" Especies activas: {’, ’.join(especies_activas)}")

# Creación de una categorı́a "otros" para todos los estados restantes
otros_estados = Lf[n:]
total_otros = sum(freq for _, freq in otros_estados)
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print(f"\n Otros: {len(otros_estados)} estados diferentes
(frecuencia total: {total_otros}, {total_otros/len(L)*100:.2f}%)")

# Creación de un diccionario para mapear cada estado a su categorı́a
(Lf1, Lf2, ..., Lfn u "otros")
categorias = {}
for i, (estado, _) in enumerate(top_n):

categorias[estado] = f"Lf{i+1}"

# Conteo de transiciones entre categorı́as
print("\n Contando transiciones entre categorı́as...")

# Inicialización de la matriz de transiciones
categorias_nombres = [f"Lf{i+1}" for i in range(n)] + ["otros"]
matriz_transiciones = np.zeros((n+1, n+1))

# Conteo de transiciones en la lista L
for i in range(len(L) - 1):

estado_actual = L[i]
estado_siguiente = L[i+1]

# Determinar categorı́a del estado actual
if estado_actual in categorias:

cat_actual_idx = int(categorias[estado_actual][2:]) - 1
else:

cat_actual_idx = n # "otros"

# Determinar categorı́a del estado siguiente
if estado_siguiente in categorias:

cat_siguiente_idx = int(categorias[estado_siguiente][2:]) - 1
else:

cat_siguiente_idx = n # "otros"

# Incrementar el contador de transiciones
matriz_transiciones[cat_actual_idx, cat_siguiente_idx] += 1

# Cálculo del número total de transiciones
total_transiciones = np.sum(matriz_transiciones)

# Normalización de la matriz de transiciones por filas
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suma_filas = matriz_transiciones.sum(axis=1, keepdims=True)
matriz_transiciones_norm = np.zeros_like(matriz_transiciones)
for i in range(n+1):

if suma_filas[i] > 0:
matriz_transiciones_norm[i] =
matriz_transiciones[i] / suma_filas[i]

# Visualización de la matriz de transiciones
print("\n Matriz de transiciones (conteo):")
print(" " + " ".join(f"{cat:>8}" for cat in categorias_nombres))
for i, cat in enumerate(categorias_nombres):

print(f"{cat:>5}", end=" ")
for j in range(n+1):

print(f"{matriz_transiciones[i, j]:8.0f}", end=" ")
print()

print("\n Matriz de transiciones (probabilidades):")
print(" " + " ".join(f"{cat:>8}" for cat in categorias_nombres))
for i, cat in enumerate(categorias_nombres):

print(f"{cat:>5}", end=" ")
for j in range(n+1):

print(f"{matriz_transiciones_norm[i, j]:8.3f}", end=" ")
print()

# Cálculo de la matriz de transición de Markov
(normalizada por el total de transiciones)
matriz_markov = matriz_transiciones / total_transiciones

print("\n Matriz de transición de Markov (normalizada por el total de
transiciones):")
print(" " + " ".join(f"{cat:>8}" for cat in categorias_nombres))
for i, cat in enumerate(categorias_nombres):

print(f"{cat:>5}", end=" ")
for j in range(n+1):

print(f"{matriz_markov[i, j]:8.6f}", end=" ")
print()

# Visualización gráfica de la matriz de transiciones como
un mapa de calor
plt.figure(figsize=(10, 8))
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plt.imshow(matriz_transiciones_norm, cmap=’viridis’,
interpolation=’nearest’)
plt.colorbar(label=’Probabilidad de transición’)
plt.xticks(range(n+1), categorias_nombres)
plt.yticks(range(n+1), categorias_nombres)
plt.xlabel(’Estado siguiente’)
plt.ylabel(’Estado actual’)
plt.title(’Matriz de transiciones entre estados’)

# Añadir etiquetas numéricas a cada celda
for i in range(n+1):

for j in range(n+1):
plt.text(j, i, f"{matriz_transiciones_norm[i, j]:.3f}",

ha="center", va="center", color="white"
if matriz_transiciones_norm[i, j] > 0.5 else "black")

plt.tight_layout()
plt.show()

# Análisis de estabilidad de estados
print("\n Análisis de estabilidad de estados:")
for i, cat in enumerate(categorias_nombres):

prob_permanencia = matriz_transiciones_norm[i, i]
if i < len(matriz_transiciones_norm) else 0
print(f" {cat}: Probabilidad de permanencia =
{prob_permanencia:.3f}")

# Visualización de la distribución de frecuencias de los estados
plt.figure(figsize=(12, 6))
frecuencias_categorias = [freq for _, freq in top_n] + [total_otros]
plt.bar(categorias_nombres, frecuencias_categorias, color=[’blue’,
’green’, ’red’, ’purple’, ’orange’, ’cyan’, ’magenta’, ’yellow’, ’brown’,
’pink’, ’gray’])
plt.xlabel(’Categorı́a de estado’)
plt.ylabel(’Frecuencia’)
plt.title(’Distribución de frecuencias de estados’)
plt.grid(axis=’y’, alpha=0.3)

# Añadir etiquetas de porcentaje sobre cada barra
for i, freq in enumerate(frecuencias_categorias):

149



plt.text(i, freq + 0.5, f"{freq/len(L)*100:.2f}%", ha=’center’,
va=’bottom’)

plt.tight_layout()
plt.show()

### Módulo de Análisis de Frecuencia de Especies en Estados Lfi

# Este módulo analiza la frecuencia de aparición de cada especie en los
# estados Lfi y compara esta distribución con la distribución en
# las condiciones iniciales.

print("\n Analizando frecuencia de especies en estados Lfi...")

# Inicialización de matrices para almacenar la frecuencia de especies
frecuencia_especies_lfi = np.zeros((len(species), n))
frecuencia_especies_inicial = np.zeros(len(species))

# Conteo de especies en estados Lfi
for i, (estado, _) in enumerate(top_n):

vector = np.array([int(bit) for bit in estado])
frecuencia_especies_lfi[:, i] = vector

# Conteo de especies en condiciones iniciales
for cond_inicial in condiciones_iniciales:

frecuencia_especies_inicial += cond_inicial

# Normalización de frecuencias
frecuencia_especies_inicial = frecuencia_especies_inicial
/ len(condiciones_iniciales)

# Visualización de la frecuencia de especies en estados Lfi
plt.figure(figsize=(14, 10))

# Crear una matriz para la visualización
matriz_visualizacion = np.zeros((len(species), n))
for i in range(len(species)):

for j in range(n):
matriz_visualizacion[i, j] = frecuencia_especies_lfi[i, j]
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# Ordenar especies por su frecuencia total en los estados Lfi
frecuencia_total = np.sum(matriz_visualizacion, axis=1)
indices_ordenados = np.argsort(-frecuencia_total)
matriz_visualizacion = matriz_visualizacion[indices_ordenados]
especies_ordenadas = [species[i] for i in indices_ordenados]
frecuencia_especies_inicial = frecuencia_especies_inicial[indices_ordenados]

# Visualización como mapa de calor
plt.subplot(1, 2, 1)
plt.imshow(matriz_visualizacion, cmap=’viridis’, aspect=’auto’)
plt.colorbar(label=’Presencia (1) / Ausencia (0)’)
plt.yticks(range(len(especies_ordenadas)), especies_ordenadas)
plt.xticks(range(n), [f"Lf{i+1}" for i in range(n)])
plt.title(’Presencia de especies en estados Lfi’)
plt.xlabel(’Estados Lfi’)
plt.ylabel(’Especies’)

plt.tight_layout()
plt.show()

print("\n Análisis de frecuencia de especies completado.")
print("Se ha comparado la distribución de especies en los estados Lfi
con la distribución en las condiciones iniciales.")
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A.3. Gráficas complementarias.
A.3.1. Exploración estructural

Cuadro A.1: Frecuencia de especies por subconjuntos considerados para cálculo de sostenibilidad de comunidades
ecológicas (Exploración estructural). Cálculos obtenidos en Python™ (ver Apéndice A.2).

Especies
no na-
tivas

N = 25 N = 50 N = 75

No

Śı

En el cuadro A.1 se incluyen las gráficas correspondientes a la distribución de especies en los subconjuntos generados.
Este análisis permite visualizar las frecuencias relativas de las especies en los subconjuntos considerados para evaluar
la sostenibilidad dentro del modelo de comunidad ecológica.
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Cuadro A.2: Comparativa de la sostenibilidad de las abstracciones finales más frecuentes sin perturbación (No) y con
perturbación (Śı). Cálculos obtenidos en Python™ (ver Apéndice A.2).

Especies
no na-
tivas

N = 25 N = 50 N = 75

No

Śı

Para facilitar la comprensión del análisis realizado, a partir del resumen de resultados presentados en el Cuadro 4.2,
como apoyo visual se presenta cada gráfica obtenida para las condiciones evaluadas en la exploración estructural en el
Cuadro A.2.
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A.3.2. Exploración Dinámica

Cuadro A.3: Frecuencia de especies por subconjuntos considerados para cálculo de sostenibilidad de comunidades
ecológicas. Cálculos obtenidos en Python™ (ver Apéndice A.2).

Especies
no na-
tivas

M = 1.000 M = 2.000 M = 3.000

No

Śı
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Cuadro A.4: Continuación de Frecuencia de especies por subconjuntos considerados para cálculo de sostenibilidad de
comunidades ecológicas. Cálculos obtenidos en Python™ (ver Apéndice A.2).

Especies
no na-
tivas

M = 4.000 M = 5.000

No

Śı

En el cuadro A.3 y A.4 se incluyen las gráficas correspondientes a la distribución de especies en los subconjuntos
generados. Este análisis permite visualizar las frecuencias relativas de las especies en los subconjuntos considerados
para evaluar la sostenibilidad dentro del modelo de comunidad ecológica.
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Cuadro A.5: Comparativa de la sostenibilidad de las abstracciones finales más frecuentes sin perturbación (No) y con
perturbación (Śı). Cálculos obtenidos en Python™ (ver Apéndice A.2).

Especies
no na-
tivas

M = 1.000 M = 2.000 M = 3.000

No

Śı
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Cuadro A.6: Continuación de comparativa de la sostenibilidad de las abstracciones finales más frecuentes sin pertur-
bación (No) y con perturbación (Śı). Cálculos obtenidos en Python™ (ver Apéndice A.2).

Especies
no na-
tivas

M = 4.000 M = 5.000

No

Śı

Para facilitar la comprensión del análisis realizado, a partir del resumen de resultados presentados en el Cuadro 4.4,
como apoyo visual se presenta cada gráfica obtenida para las condiciones evaluadas en la exploración estructural en los
Cuadros A.5 y A.6.
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Apéndice B

Apéndice

B.1. Sobre la libreŕıa pyCOT.
La libreŕıa PyCOT incorpora en su ontoloǵıa la libreŕıa NetworkX (Aric Hagberg, 2024)

que es muy utilizada para la creación, manipulación y estudio de la estructura, dinámica y
funciones de redes complejas.

Finalmente, es importante destacar que en el desarrollo de PyCOT se contempla la poten-
cial incorporación de las siguientes libreŕıas complementarias a NetworkX para la obtención
de resultados y simulaciones:

NumPy: Permite la manipulación eficiente de matrices multidimensionales y su utiliza-
ción para cálculos numéricos (Oliphant, 2024).

Pandas: Permite el manejo y análisis tablas ofreciendo la estructura de datos como
DataFrames (McKinney, 2024).

bitarray: Utilizada para realizar arreglos de daros en formato de bits de manera eficiente,
se utiliza para manipulación y almacenamiento de datos binarios (Schnell, 2024).

SciPy: Ampĺıa las funcionalidades de la libreŕıa NumPy incorporando funciones avan-
zadas de álgebra lineal, optimización, integración y estad́ıstica (Virtanen, 2024).

libroadrunner: Tiene la capacidad de realizar simulaciones de modelos biológicos en
formato SBML, muy utilizado en bioloǵıa computacional (Kiri Choi, 2024).

pyvis: Permite visualizar interactivamente redes, generando gráficos en formato JavaS-
cript para su visualización en formato web, principalmente HTML (Rotolo, 2024).

matplotlib: Permite generar gráficos estáticos, animados e interactivos, ampliamente
para visualización de datos (Hunter, 2024).
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joblib: Permite almacenar y ejecutar eficientemente tareas paralelas y serialización de
objetos, como base de datos de una red (Grisel, 2024).

PuLP: Permite modelar y solucionar problemas de programación lineal definiendo y
resolviendo problemas de optimización (Mitchell, 2024).

Seaborn: Permite visualizar datos estad́ısticos por medio de gráficas llamativas e inte-
grables fácilmente con la libreŕıa Matplotlib (Waskom, 2024).

La incorporación de estas libreŕıas estuvo condicionada al rendimiento del algoritmo im-
plementado en PyCOT, el cual deb́ıa garantizar la ejecución eficiente de los cálculos y simu-
laciones numéricas requeridas.
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