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cantidad de crecimiento, mientras que las hijas deben crecer significativamente
antes de alcanzar el umbral de tamaño cŕıtico requerido para la división (Figura
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periódico de X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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4.8. Soluciones numéricas. La gráfica muestra las oscilaciones de la concentración de
células en estado de compromiso (rojo), células en estado de desarrollo (azul)
y la concentración de ox́ıgeno disuelto (verde) en el cultivo de levadura en un
quimiostato. Los valores iniciales y los parámetros del sistema se han configu-
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4.16. Parámetros Ajustados. La figura muestra el resultado del ajuste de curva. Los
puntos de color rojo representan los valores experimentales de la fracción de
células comprometidas. Los puntos de color azul representan los niveles expe-
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Resumen

Dependiendo de factores como: la tasa de dilución, el nivel de ox́ıgeno y pH; un
cultivo continuo de levadura con glucosa limitante, presenta oscilaciones autosos-
tenidas en la concentración de ox́ıgeno disuelto [38, 20]. Según Futcher [21] esto
ocurre porque las células que se encuentran en las postrimeŕıas de la etapa G1
liquidan sus provisiones de carbohidratos, produciendo a ráız de esto, un estalli-
do de glucosa. Una parte de la glucosa generada, es quemada por las células v́ıa
respiración oxidativa, fermentando el resto en etanol, el cual se libera al medio.
Este fenómeno incrementa en gran medida la tasa de respiración. El etanol libera-
do entra en contacto con las células que se encuentran en rezagadas, propiciando
que alcancen a las células que van a la vanguardia. Debido a este mecanismo, un
conjunto grande de células, se compromete orquestadamente con iniciar el ciclo de
división celular.

La secuencia de eventos descrita, se encuentra conectada al ciclo metabólico de
la levadura, ya que las fases oxidativas (Ox) y de reducción - construcción (R/B)
parecen producirse en una ventana temporal que comienza en la etapa G1 tard́ıa
y termina justo antes del inicio de la larga fase de crecimiento G1 [70]. En es-
te peŕıodo se detecta un alto consumo de ox́ıgeno. Por otro lado el desarrollo
de las células de levadura parece acontecer en paralelo a la fase de reducción -
carga (R/C), etapa en la cual estas células usan la glucosa de tres maneras distin-
tas; como fuente de enerǵıa, como material para construir su pared celular, como
provisiones en forma de glucógeno y trehalosa que le servirán, a la postre, como
materiales para el próximo ciclo de división celular [21]. En esta ventana temporal
se produce un bajo consumo de ox́ıgeno.

En este trabajo asumimos la hipótesis de Futcher [21] en cooperación con el modelo
simplificado propuesto por Burnetti et al. [10, 9] con el fin de modelar matemáti-
camente el mecanismo de oscilación en el consumo de ox́ıgeno de las células de
levadura en un cultivo continuo en condiciones de limitación de nutrientes. Para
llevar a cabo tal tarea, elaboramos un sistema de ecuaciones diferenciales ordi-
narias, las cuales representan las interdependencias y el cambio en el tiempo de
las concentraciones de biomasa y sustratos limitantes. A partir de este modelo
matemático, obtenemos sugerencias acerca de los valores idóneos de los paráme-
tros del sistema que propicien oscilaciones en la concentración de ox́ıgeno disuelto.
Finalmente, este modelo es forzado a adecuarse a un caso particular ajustando,
en la medida de lo posible, sus parámetros para que reproduzca un resultado
experimental obtenido por Burnetti [9].
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Abstract

Depending on factors such as dilution rate, oxygen level, and pH, a continuous
yeast culture with limiting glucose exhibits self-sustained oscillations in dissolved
oxygen concentration [38, 20]. According to Futcher [21], this occurs because cells
at the end of the G1 stage deplete their carbohydrate reserves, leading to a burst
of glucose. Some of the generated glucose is oxidatively respired by cells, while the
rest is fermented into ethanol, which is released into the medium. This phenomenon
significantly increases the respiration rate. The released ethanol comes into contact
with lagging cells, enabling them to catch up with the leading cells. Due to this
mechanism, a large set of cells collectively commits to initiating the cell division
cycle.
The described sequence of events is linked to the yeast metabolic cycle, as the
oxidative (Ox) and reduction-construction (R/B) phases appear to occur in a
temporal window beginning in late G1 and ending just before the onset of the long
G1 growth phase [70]. High oxygen consumption is detected during this period.
On the other hand, yeast cell development seems to occur in parallel with the
reduction-charging (R/C) phase, during which cells use glucose in three different
ways: as an energy source, as material to build their cell wall, and as reserves in
the form of glycogen and trehalose, which will ultimately serve as materials for the
next cell division cycle [21]. Low oxygen consumption occurs during this temporal
window.
In this work, we adopt Futcher’s hypothesis [21] in conjunction with the simplified
model proposed by Burnetti et al. [10, 9] to mathematically model the oscillation
mechanism in yeast cell oxygen consumption in a continuous culture under nutrient
limitation conditions. To accomplish this task, we formulate a system of ordinary
differential equations representing the interdependencies and time changes in bio-
mass and limiting substrates concentrations. From this mathematical model, we
obtain insights into the ideal parameter values that facilitate oscillations in dissol-
ved oxygen concentration. Finally, we force this model to fit a particular case by
adjusting its parameters as much as possible to replicate an experimental result
obtained by Burnetti [9].
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Caṕıtulo 1

Introducción

1.1. Antecedentes

1.1.1. El cultivo continuo de la levadura

El cultivo de microorganismos, y en particular la producción de levaduras, es una práctica
experimental que se encuentra en un estado de desarrollo avanzado. Esta tarea ha sido, desde
hace largo tiempo, perfeccionada en virtud de sus beneficios. De hecho, las levaduras consti-
tuyen un grupo de microorganismos muy ı́ntimamente asociado al progreso y bienestar de la
humanidad [5]. Algunas especies de levaduras del género Saccharomyces son capaces de llevar
a cabo el proceso de fermentación, facultad que se ha usado desde hace much́ısimos años en la
producción de pan y de bebidas alcohólicas. El consumo de levaduras ha ayudado a inspirar
un sinnúmero de obras de arte que ensalzan al Dios del vino y a aquellos que disfrutan de su
consumo [64, 56]. El perfeccionamiento y el natural desarrollo de las técnicas de producción de
los productos asociados con las levaduras pudo haber propiciado progresivamente el estudio
detallado de S. Cerevisiae. A ráız de su simpleza, este microorganismo se convirtió en un
modelo de estudio para la célula eucarionte, contribuyendo de manera muy importante a la
bioloǵıa celular.

Con el fin de recrear las condiciones adecuadas para la producción de cierto producto
derivado, por ejemplo, de la fermentación, los microorganismos como la levadura se encierran
junto a sus nutrientes al interior de una vasija. Este artefacto, conocido como bioreactor,
consiste comúnmente en un recipiente hermético, donde pueden controlarse algunas variables
ambientales relevantes, para la transformación del material biológico, como la temperatura,
pH, alimentación, suministro de ox́ıgeno, etc. Es muy importante para la dinámica del cultivo,
si el bioreactor posee entrada y/o salida de medio fresco. Cuando el sistema posee una entrada
y una salida para el suministro de nutrientes, el bioreactor recibe el nombre de Quimioestato.
Cuando el sistema no posee entrada ni salida, el cultivo se denomina cultivo por lote y da pie
a un cultivo en modo discontinuo.
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Figura 1.1: Crecimiento de quimiostatos. En una cámara de quimiostato (A), se agita y airea
un cultivo de levadura mientras se alimenta con medio fresco a una velocidad de dilución
constante (D, volumen/h). Los medios agotados y las células se eliminan a la misma velo-
cidad a través de un tubo de salida. El crecimiento celular alcanza un equilibrio en el que
la composición del medio es aproximadamente constante y la tasa de crecimiento es igual
a la tasa de dilución del medio. Las sondas miden constantemente el pH y la pO2 (ox́ıgeno
disuelto) (B). Durante el crecimiento continuo, las oscilaciones metabólicas son detectables
por cambios ŕıtmicos en pO2 (Figura adaptada de Burnetti, 2017 [9]).

1.1.2. Oscilaciones en el consumo de ox́ıgeno

En la naturaleza nos encontramos con fenómenos de carácter oscilatorio por doquier. El d́ıa
y la noche, el ciclo celular, el ritmo circadiano y las estaciones del año, son sólo algunos de
los ejemplos más familiares. En esta investigación, nos acercaremos al estudio de oscilaciones
presentes en cultivos del microorganismo unicelular Saccharomyces Cerevisiae, conocido co-
rrientemente como la “Levadura de la cerveza” o “Baker’s yeast” (Levadura de panadeŕıa).
Cuando la levadura es cultivada al interior de un quimioestato, en fuentes de carbón como
la glucosa, el etanol o el acetaldeh́ıdo, suministrando una cantidad moderada o mı́nima de
nutriente, se producen oscilaciones que se manifiestan a través de la tasa de consumo de
ox́ıgeno o la tasa de evolución del CO2, entre otras formas [58]. También se han observado
otras oscilaciones relacionadas con el consumo de glucosa y la producción de biomasa [42][16].
Entender a cabalidad cuales son las causas de estas oscilaciones es una tarea pendiente.

El objetivo de este trabajo consiste, en construir un modelo matemático de las oscilaciones
en el consumo de ox́ıgeno, en un cultivo continuo de levadura en condiciones de limitación
de nutrientes. Este modelo debe ser coherente con el conocimiento biológico disponible del
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metabolismo celular de la levadura.

Respecto del tema general de las oscilaciones en cultivos de levadura, se han ensayado
variadas explicaciones sin que a partir de ellas se haya podido construir una teoŕıa definitiva.
Existen dos tipos de perspectivas en modelamiento oscilatorio del metabolismo de S. Cerevi-
siae; las que se han centrado principalmente en reacciones intracelulares y las que se enfocan en
procesos de transporte acoplados a cinéticas intracelulares sustancialmente concentradas[58].

El fenómeno oscilatorio, objeto de nuestro estudio, son las fluctuaciones sostenidas y
autónomas, de la cantidad de ox́ıgeno disuelto presente en el medio de cultivo de la levadura,
cuando esta crece en condiciones de continuidad y de limitación de nutrientes. El proceso que
propicia las oscilaciones respiratorias se ha descrito de la siguiente manera. Cuando las célu-
las de levadura prototróficas crecen en un cultivo a una alta densidad, se privan de alimento
durante un peŕıodo corto y luego se alimentan continuamente con bajas concentraciones de
glucosa. Como consecuencia de esto, la población de células se vuelve altamente sincronizada
y sufre fuertes oscilaciones en el consumo de ox́ıgeno. Cuando se cumplen estas condiciones, la
levadura exhibe ciclos robustos y altamente periódicos en forma de ráfagas respiratorias [70].
Durante estas oscilaciones, las células pasan por fases en las que consumen ox́ıgeno rápida-
mente, seguidas de fases más largas en las que consumen mucho menos ox́ıgeno. La duración
del peŕıodo de estos ciclos metabólicos en tales condiciones de crecimiento, suele ser de apro-
ximadamente 4 a 5 horas, pero puede variar según la tasa de adición de glucosa [70]. Dichos
ciclos persisten mientras se suministren concentraciones continuas de glucosa a las células.

Este hecho aún resulta sorprendente, porque esperaŕıamos que el consumo de ox́ıgeno de
una población de microorganismos aeróbicos, como S. Cerevisiae, presente un comportamien-
to estable en el tiempo. Esperaŕıamos observar, un consumo decreciente de ox́ıgeno, si los
microorganismos disminuyeran en número. Esparaŕıamos observar un consumo creciente de
este, si la cantidad de microorganismos aumentara y un consumo constante, si la cantidad de
estos organismos no cambiara. Contradiciendo este hecho, se observó a mediados del siglo XX
que la cantidad de ox́ıgeno disuelto y los niveles de pH en un cultivo de S. Cerevisiae, presenta
fluctuaciones en forma oscilante cuando esta levadura crece en condiciones de continuidad y
de limitación de nutrientes. Este hecho fue observado inicialmente por R. K. Finn y R. E.
Wilson en el año 1954 [20] y por H. Kaspar von Meyenburg en el año 19691[38]. A partir de
estas observaciones se debió reconocer, que el consumo de ox́ıgeno de una población de S.
Cerevisiae no siempre será una función monótona del tiempo, sino que por el contrario, el
consumo de ox́ıgeno, en las condiciones de cultivo consideradas, presenta un comportamiento
oscilatorio a lo largo del tiempo.

1H. Kaspar von Meyenburg (1969). Energetics of the budding cycle of Saccharomyces cerevisiae during
glucose limited aerobic growth.
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Figura 1.2: El YMC. Durante el modo por lote, las células crecen a una alta densidad y luego
se dejan en inanición durante al menos 4 horas. Durante el modo continuo (flecha), medio
conteniendo glucosa es introducido en el cultivo a una tasa de dilución constante ( 0,09 a 0,1
horas−1). dO2 se refiere a la concentración ( % de saturación) del ox́ıgeno disuelto en el medio
(Figura adaptada de Tu et al. , 2005 [70]).

1.1.3. Ciclo metabólico de la levadura

Recientes estudios de expresión genética han mostrado como las variaciones respiratorias están
ı́ntimamente relacionadas con el metabolismo celular de S. Cerevisiae. Para nuestro propósito,
no es importante describir la naturaleza bioqúımica de estas relaciones, más, si es necesario
mencionar y bosquejar brevemente, la conexión general entre estas variaciones respiratorias y
el metabolismo celular, además de considerar con mayor detalle, los aspectos más relevantes
para la configuración de nuestro modelo.

Estudios completos de micromatrices, han revelado que más de la mitad del genoma de
la levadura, se expresa periódicamente en función de oscilaciones respiratorias de modo muy
preciso, hecho que especificaŕıa un programa ampliamente orquestado responsable de regu-
lar numerosas salidas celulares [69]. Esta expresión periódica, de gran parte del genoma de
la levadura, se encuentra conectada con gran variedad de procesos celulares, los cuales dan
forma a una serie de procesos encadenados entre śı, de forma periódica, serie recurrente de
eventos bautizada por Tu et al. como “Ciclo metabólico de la levadura” (Yeast Metabolic Cy-
cle (YMC)) [70]. El YMC consiste, a grosso modo, en la compartimentalización temporal de
eventos celulares claves. Entre estos eventos celulares claves, son de especial interés aquellos
relacionados con la producción de protéınas relacionadas con el manejo de la enerǵıa. Gran
parte de las protéınas con funciones asociadas con la enerǵıa y el metabolismo, son codifi-
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cadas por genes que tienden a expresarse con una periodicidad excepcionalmente precisa y
robusta, hecho que parece sugerir que estos ciclos, podŕıan ser intŕınsecamente metabólicos
[70]. Los estudios de los perfiles de expresión génica temporal, revelaron tres supercúmulos de
expresión génica, aptos para definir con ellos las tres fases principales del YMC: OX (oxidativa-
respiratoria), RB (reductiva-constructiva) y RC (reductiva-de carga). Diferentes categoŕıas de
genes alcanzan su punto máximo en cada fase y cada célula pasaŕıa sucesivamente por cada
una de las tres fases durante cada YMC [70] (Figura 1.3).

Figura 1.3: Compartimentalización temporal. Procesos celulares claves están compartimenta-
lizados en el tiempo por v́ıa del ciclo metabólico. La progresión ordenada a través de distintas
fases (OX, RB, RC) del ciclo metabólico permite una compartimentalización temporal de nu-
merosos procesos celulares y metabólicos (Figura adaptada de Tu, 2005 [70]).

Un aspecto interesante de mencionar, consiste en el establecimiento de la relación, entre las
fases del metabolismo celular y las instancias de alto consumo de ox́ıgeno (HOC, High Oxygen
Consumption), y de bajo consumo de ox́ıgeno (LOC, Low Oxygen Consumption). Como se
puede observar, comparando las figuras 1.3 y 1.4, las fases del YMC correspondientes a un
alto consumo de ox́ıgeno, HOC, son la fase Oxidativa (OX) y la fase Reductiva-Construtiva
(RB), mientras que la fase Reductiva-Carga (RC), corresponde a una etapa de bajo consumo
de ox́ıgeno, LOC.
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Figura 1.4: Bajo consumo de ox́ıgeno, LOC, trazas de ox́ıgeno disuelto encerradas en elipses
verdes. Alto consumo de ox́ıgeno, HOC, trazas de ox́ıgeno disuelto encerradas en elipses rojas
(Figura adaptada de Slavov, 2011) [66].

1.1.4. Ciclo de división celular

Se denomina ciclo de división celular (CDC) o simplemente ciclo celular al conjunto ordenado
de sucesos que conducen al crecimiento de la célula y la división en dos células hijas. Las etapas
son: G1-S-G2 y M 2. Las células de S. Cerevisiae respetan este orden, crecen y se reproducen
según este esquema. Sin bien las células de S. Cerevisiae respetan las etapas mencionadas,
su división en dos células hijas se produce de forma asimétrica en un proceso denominado
Gemación (Budding). 3

1.1.5. Relación YMC-CDC

Es importante abordar la relación existente entre el ciclo metabólico y el ciclo celular. Se ha
descrito un acoplamiento entre el ciclo metabólico (YMC) y el ciclo de división celular (CDC)

2“El ciclo de división mitótica de S. Cerevisiae consta de una fase de replicación del DNA (S) y de otra de
segregación cromosómica o mitosis (M) separadas por dos fases (G1) (entre M del ciclo previo y S) y G2 (entre
S y M), finalizando con la separación citoplásmica o citoquinesis. A diferencia de otras células eucariotas, y
debido a que las células se dividen mediante gemación, esta división no es exactamente simétrica, generándose
una célula hija de menor tamaño que la célula madre. Mientras que esta última puede iniciar inmediatamente
un nuevo ciclo de división, la célula hija debe crecer hasta alcanzar un tamaño cŕıtico antes de iniciar su primer
proceso de gemación. En base a criterios morfológicos y genéticos, se ha definido un punto clave en la fase G1,
denominado Start (equivalente al ‘restriction point’ de células superiores), a partir del cual las células inician la
emergencia de la yema al mismo tiempo que preparan la maquinaria para la replicación y posterior segregación
cromosómica. Start también es el punto del ciclo en el que confluyen señales externas (feromonas sexuales,
estado nutricional del medio, etc.) y las células ‘deciden’ si continuar el ciclo de división o entrar en un estado
de reposo en forma de células no gemadas (a menudo denominado fase G0)”[31].

3La gemación (del lat́ın gemma “joya o brote”) es un tipo de reproducción asexual. Es una división desigual:
consiste en la formación de protuberancias llamadas yemas en el cuerpo del espécimen progenitor que, al crecer
y desarrollarse, originan nuevos organismos. Estos pueden separarse del progenitor, o bien quedar unidos a él,
formando una colonia. A nivel unicelular, es un proceso de mitosis asimétrica que se da en algunos seres unicelu-
lares, como las levaduras https://es.wikipedia.org/w/index.php?title=Gemacion&oldid=153608023 [74].

8

https://es.wikipedia.org/w/index.php?title=Gemacion&oldid=153608023


Figura 1.5: Crecimiento, tamaño y Start (Inicio) del ciclo celular en las células madre e
hija. Las madres pueden volver a dividirse rápidamente después de una pequeña cantidad de
crecimiento, mientras que las hijas deben crecer significativamente antes de alcanzar el umbral
de tamaño cŕıtico requerido para la división (Figura adaptada de Burnetti, 2017 [9].

[38, 60]. El acoplamiento entre el YMC y el CDC es una cuestión abordada recientemente por
Burnetti et al. [10] 4, quienes aportan evidencia de que el Inicio (Start) del ciclo de división
celular y la etapa de alto consumo de ox́ıgeno (HOC) están estrechamente vinculadas a través
de diferentes cepas de S. Cerevisiae y distintas tasas de crecimiento. Como explicación de
este acoplamiento, se sugiere el siguiente mecanismo. Una vez que las células han acumula-
do reservas de enerǵıa suficientes, y por ende, se encuentran en los momentos finales de su
etapa de crecimiento G1, estas pueden comprometerse irremisiblemente a iniciar el ciclo de
división celular, entrando directamente a la etapa S, quemando los carbohidratos acumulados
y aumentando de manera explosiva el consumo de ox́ıgeno. La lógica detrás de este acopla-
miento YMC-CDC seŕıa, asegurar la replicación del ADN, permitiendo que la división celular
sólo ocurra cuando se hayan acumulado suficientes reservas de enerǵıa [10]. Sin embargo, es-
tudios posteriores, revelaron que las células ingresan a la fase de alto consumo de ox́ıgeno
del ciclo metabólico, antes de pasar el Start, lo que respalda un modelo de acoplamiento del
ciclo metabólico - ciclo de división celular; en el que el ciclo metabólico más corto controla el
compromiso con el ciclo celular, probablemente a través de la modulación de los umbrales de
tamaño celular [9].

Se sabe que, a pesar haber cierta independencia entre el YMC y el CDC, la replicación
del ADN ocurre una vez por YMC [40, 41]. A decir de Futcher [21], hay que aceptar que las
oscilaciones metabólicas se encuentran, por decirlo de alguna de manera, superimpuestas al
ciclo celular. Al menos, el hecho de que la relación entre YMC y copia del ADN sea de uno
a uno, asegura que no podŕıan haber dos CDC en un YMC o viceversa. Por otro lado, el
YMC está definido en función de los estados HOC y LOC. Al estado HOC le corresponden

4Anthony. J. Burnetti, Mert Aydin, and Nicolas E. Buchler. Cell Cycle start is coupled to entry into the
yeast metabolic cycle across diverse strains and growth rates. Molecular Biology of the Cell, 27:64-74, 2016.
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las fases OX y RB, mientras que con el estado LOC se encuentra asociada la fase RC. Se
ha observado que la replicación del ADN es un proceso que ocurre en la fase RC [9]. Como
dato anexo, es interesante notar que se midió que, a tasas de dilución D más bajas las células
pasan más tiempo en LOC, acumulando carbohidratos de almacenamiento, debido al menor
flujo de glucosa. Una vez que estas células, que se encuentran en LOC, alcanzan un umbral
metabólico, cambian a HOC y catabolizan sus carbohidratos almacenados para proporcionar
biomasa y enerǵıa, útiles para el crecimiento y la división celular [10, 21].

La quema y el almacenamiento de carbohidratos es un proceso ćıclico, del cual se tiene
una imagen muy elocuente desde hace ya tiempo [57, 43]. En su larga y lenta etapa de creci-
miento (G1), en condiciones de limitación de glucosa, las células hijas crecen por respiración
oxidando parte de la glucosa, y guardando parte de esta como glucógeno y trehalosa. Luego,
en algún momento de G1 tard́ıo, un evento, posiblemente un máximo en el nivel de AMP
ćıclico 5, detiene este proceso. El almacenamiento cesa y las reservas de glucógeno y trehalosa
se transforman repentinamente en glucosa, la cual se usa v́ıa glucólisis para realizar respi-
ración oxidativa, aumentando en gran manera con esto la tasa de respiración. Sin embargo,
la repentina explosión de glucosa es demasiada como para poder ser absorbida por la v́ıa
respiratoria, de modo tal que el resto fermenta a etanol. Incréıblemente, en este punto del
ciclo, las células en régimen estricto de escasez de glucosa, excretan etanol de la glucólisis
producto del desborde de glucosa, en el medio. De esta manera, obtienen parte de su enerǵıa
de la fermentación, al quemar repentinamente sus carbohidratos, incrementando en gran me-
dida su producción de ATP 6. Las células expresan ARNm para las ciclinas Cln1 y Cln2 y
se comprometen a atravesar el ciclo celular pasando el punto conocido como Start, entrando
en consecuencia a la llamada fase S, en donde ocurre la replicación del ADN. Luego, habien-
do agotado las reservas de carbohidratos, las células detienen la fermentación, respiran a un
ritmo bajo permitido por las pequeñas cantidades de glucosa (y ahora etanol) disponibles en
el medio y comienzan el arduo proceso de almacenamiento de carbohidratos para el próximo
ciclo celular (Figura 1.6) [70, 21].

5El AMP ćıclico, o simplemente AMPc (monofosfato de adenosina ćıclico), un importante segundo mensajero
intracelular en las células eucariotas. El AMPc juega un papel crucial en la transducción de señales celulares
y está involucrado en la regulación de numerosos procesos fisiológicos.

6El ATP (adenośın trifosfato) es la moneda energética de las células. Funciona como un portador de enerǵıa
al liberarla cuando se rompe un enlace entre sus grupos fosfato. Esta enerǵıa impulsa una variedad de procesos
celulares cruciales, desde la contracción muscular hasta la śıntesis de moléculas esenciales. En resumen, el ATP
desempeña un papel central en proporcionar la enerǵıa necesaria para las actividades celulares fundamentales.
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Figura 1.6: El ciclo metabólico en células de levadura de crecimiento lento. El ciclo de los
carbohidratos almacenados. En las células de crecimiento lento, el glucógeno y la trehalosa se
acumulan durante G1 y luego se liquidan repentinamente hacia al final de G1. Poco después
de la liquidación, los niveles de ARNm de las ciclinas de G1, Cln1 y Cln2 alcanzan un máximo,
se pasa el Start y entonces ocurre la gemación y la śıntesis de ADN. Datos adaptados de Silljé
et al., 1997 [65]. Figura adaptada de Futcher, 2006 [21].

Entonces, ¿De qué modo podŕıan relacionarse la secuencia de eventos del CDC con los
estados HOC y LOC?

Las observaciones sugieren que en cierto momento la población de S. Cerevisiae se sincro-
niza en torno a un mismo evento del ciclo celular, de manera que producto de esta orquestación
obtenemos como consecuencia el fenómeno del alto y bajo consumo de ox́ıgeno [21].

1.1.6. Sincronización colectiva

¿Como se produce esta sincronización colectiva de las células de S. Cerevisiae?.

Un modelo simplificado de este fenómeno es el siguiente. Al comienzo de cada YMC una frac-
ción de la población de células se compromete a catabolizar los carbohidratos almacenados,
ingresar al HOC e iniciar el CDC. Estas levaduras “comprometidas” secretan metabolitos
que convocan a otras levaduras “susceptibles” con suficientes carbohidratos almacenados para
catabolizarlos, para ingresar al HOC. Esto produce una avalancha de levaduras comprome-
tiéndose sincrónicamente a iniciar el HOC. No todas las levaduras responden de esta manera
a las señales emitidas por las levaduras en estado de compromiso. Existe otra fracción de
células en estado refractario las cuales no han acumulado suficientes reservas de enerǵıa o
suficiente biomasa para optar a iniciar el CDC. Durante el YMC, esta fracción de células
refractarias en LOC acumulará reservas de enerǵıa y biomasa necesarias para iniciar el HOC
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espontáneamente, comprometerse al CDC y convocar por medio de sus señales a una nueva
fracción de células susceptibles para entrar al HOC [10]. (Figura.1.7)

Figura 1.7: Modelo simplificado de acoplamiento YMC-CDC (Figura adaptada de Burnetti
et al., 2016) [10].

El proceso representado por la figura 1.7 puede describirse de la siguiente manera. La traza
de ox́ıgeno disuelto dO2 indica LOC (ĺınea celeste) y HOC (ĺınea roja) en múltiples YMC. Al
comienzo de cada YMC, una fracción de la población (células rojas con brotes) se compromete
a catabolizar los carbohidratos almacenados, ingresando al HOC e iniciar el CDC. Estas leva-
duras “comprometidas” secretan metabolitos, que activan otras levaduras “susceptibles” con
suficientes carbohidratos almacenados para catabolizar sus carbohidratos almacenados [63].
Dicha señalización autocataĺıtica a través de metabolitos secretados provoca una avalancha de
levaduras susceptibles que ingresan sincrónicamente al HOC y se comprometen con el CDC.
Sin embargo, está claro que no todas las levaduras se comprometen con CDC cada YMC. El
resto de la población de levadura en LOC (células celestes) es refractaria a las señales me-
tabólicas, porque las células no han acumulado suficientes reservas de enerǵıa (puntos verdes)
para comprometerse en el YMC, y/o no han acumulado suficiente biomasa para iniciar el Start
del ciclo celular. Durante el próximo YMC, estas levaduras “refractarias” en LOC continúan
acumulando sus reservas de almacenamiento de carbohidratos y biomasa, de modo que una
nueva fracción de levaduras estará lista para iniciarse espontáneamente y provocar que otras
levaduras susceptibles se comprometan en el siguiente YMC. La población de levadura en
un quimiostato bajo en glucosa se auto-organiza en múltiples cohortes escalonadas, de modo
que solo una cohorte ingresa sincrónicamente al CDC cada YMC (es decir, acoplamiento de
uno a algunos). Es probable que las células migren entre cohortes con el tiempo, debido a la
variabilidad de célula a célula tanto en el YMC como en el CDC. Naturalmente este proceso
puede describirse con mucho más detalle. Sin embargo, para nuestro propósito de modela-
miento matemático, nos mantendremos en este nivel de complejidad. Una descripción simple,
que es coherente con el proceso descrito, es la propuesta por Futcher en el año 2006 [21] :
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... pero una explicación simplificada es que las células que primero liquidan sus carbohidratos
almacenados y secretan etanol están alimentando con etanol a otras células en el cultivo.
Por lo tanto, las células que reciben el etanol pueden crecer más rápido y alcanzar a las
células más avanzadas. Una vez que se ponen al d́ıa, también se convierten en alimentadores
en lugar de receptores. Para decir lo mismo de una manera diferente, cada célula tiene una
oscilación interna de almacenamiento y luego quema de carbohidratos, y estas oscilaciones
pueden sincronizarse a través de un cultivo completo por los efectos de alimentación cruzada
del etanol liberado y quizás otros metabolitos (por ejemplo, se han sugerido sulfuro de
hidrógeno y acetaldeh́ıdo) [52].

Futcher, 2006 [21].

Se ha observado que las células comprometidas secretan metabolitos que actúan como
señales para atraer a otras células susceptibles, lo que desencadena un ciclo sincrónico de
compromiso y entrada al estado de alto consumo. Sin embargo, no todas las células respon-
den a estas señales, ya que algunas permanecen refractarias debido a la falta de reservas
energéticas o biomasa suficientes. A medida que el ciclo avanza, estas células refractarias acu-
mulan las reservas necesarias para iniciar el siguiente ciclo y desencadenar la entrada de una
nueva fracción de células susceptibles.

En conclusión, el estudio de la sincronización colectiva en el cultivo de levadura S. cere-
visiae es de gran importancia para comprender los mecanismos que subyacen al fenómeno de
las oscilaciones en el consumo de ox́ıgeno de la levadura. El modelo simplificado propuesto
por Burnetti et al. [10] en conjunto con la explicación proporcionada por Futcher [21] pro-
pone el mecanismo que subyace a esta sincronización colectiva. Consideramos que estas dos
ideas generales son idóneas para desarrollar, con ayuda de ellas, un modelo matemático de las
oscilaciones en el consumo de ox́ıgeno de un cultivo continuo de levadura en condiciones de
limitación de nutrientes.
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1.2. Planteamiento del Problema

1.2.1. Objetivo

Construir un modelo matemático que reproduzca las oscilaciones en el consumo de ox́ıgeno
en un cultivo de levadura en condiciones de continuidad y limitación de nutrientes.

1.2.2. Pregunta de Investigación

¿Por qué se producen oscilaciones autosostenidas en la concentración de ox́ıgeno disuelto en
un cultivo continuo de levadura en condiciones de limitación de nutrientes?

1.2.3. Justificación del estudio

El objetivo de estudio posee una significancia destacada en diversos aspectos. En primer lugar,
comprender y modelar el cultivo de levadura en condiciones de continuidad y limitación de
nutrientes, resulta útil para la industria biotecnológica y alimentaria. Las levaduras desem-
peñan un papel esencial en la producción de alimentos, bebidas y productos bioqúımicos. Al
desarrollar un modelo matemático consistente con el fenómeno biológico, se proporciona una
herramienta valiosa para optimizar y controlar los procesos de cultivo de levadura. El desem-
peño que tenga el modelo en la simulación de oscilaciones en el consumo de ox́ıgeno, aśı como
también en la simulación de otros tipos de oscilaciones asociadas, es un ı́tem de particular
interés. Las oscilaciones metabólicas pueden tener implicaciones relevantes en la producción
de metabolitos deseados. Al desencadenar respuestas adaptativas en las levaduras, dichas os-
cilaciones pueden influir en la producción de productos metabólicos espećıficos. Por lo tanto,
comprender y predecir estas oscilaciones resulta crucial para maximizar la eficiencia y el ren-
dimiento de los procesos biotecnológicos que involucran levaduras.

Por otro lado, construir el modelo sobre la base del conocimiento biológico del metabolismo
celular, garantiza su coherencia con los mecanismos biológicos subyacentes. Esto proporciona
una interpretación más precisa de los resultados y una comprensión más profunda de los fac-
tores que influyen en el comportamiento del cultivo de levadura.

En resumen, construir un modelo matemático del cultivo de levadura en condiciones de
continuidad y limitación de nutrientes, capaz de generar oscilaciones en el consumo de ox́ıgeno,
es significativo tanto, desde una perspectiva aplicada en la industria biotecnológica y alimen-
taria, como desde una perspectiva cient́ıfica, al contribuir a la optimización de los cultivos
microbianos y al ensanchar el entendimiento de los procesos metabólicos llevados a cabo por
la levadura.
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Caṕıtulo 2

Marco teórico

2.1. Fundamentos de modelamiento matemático de cultivos
continuos de levadura en condiciones de limitación de nu-
trientes

El modelamiento matemático de los cultivos de levadura en condiciones de continuidad y li-
mitación de nutrientes se benefician de varios enfoques y herramientas. Se utilizan modelos
cinéticos, como el modelo de Monod [50], para describir el consumo de ox́ıgeno y nutrien-
tes por parte de los microorganismos. También se consideran efectos de retroalimentación y
análisis de estabilidad [32, 68, 25] y podŕıan emplearse modelos de reacción-difusión, para
comprender las oscilaciones en el consumo de ox́ıgeno [53]. En el modelamiento microbiano,
también tienen un lugar importante los enfoques basados en matemática discreta, como redes
de Petri [62, 13] y autómatas celulares [26], los que permiten recrear una dinámica discreta del
sistema. Estas herramientas ayudan a comprender los mecanismos de las posibles oscilaciones
y predecir su comportamiento en diferentes condiciones experimentales.

Los modelos basados en la teoŕıa de la cinética de crecimiento microbiano describen cómo
los microorganismos consumen el ox́ıgeno y otros nutrientes, en función de su tasa de creci-
miento y la disponibilidad de los sustratos. En particular, el modelo de Monod [50], propuesto
por Jacques Monod, es ampliamente utilizado en estudios de crecimiento microbiano bajo
limitación de nutrientes y describe cómo la tasa de crecimiento de un microorganismo está
relacionada con la concentración del sustrato limitante. Este modelo se basa en la idea de
que la tasa de crecimiento microbiano depende de la velocidad, a la cual los microorganismos
consumen los nutrientes disponibles.
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La ecuación del modelo de Monod es la siguiente:

µ = µmax( S

Ks + S
), (2.1)

donde:

µ es la tasa de crecimiento especifico microbiano.

µmax es la tasa máxima de crecimiento espećıfico microbiano.

S es la concentración del sustrato limitante.

Ks es la constante de saturación, que representa la concentración del sustrato a la cual
la tasa de crecimiento es la mitad de la tasa máxima.

En la ecuación (2.1), se puede observar que a medida que la concentración del sustrato S
se acerca a cero, la tasa de crecimiento espećıfico µ tiende a cero, lo cual indica que el creci-
miento está limitado por la disponibilidad de nutrientes. A medida que la concentración del
sustrato aumenta, la tasa de crecimiento también aumenta hasta alcanzar su valor máximo
(µmax). Sin embargo, a medida que la concentración del sustrato continúa aumentando, la
tasa de crecimiento se estabiliza y no puede aumentar más, lo cual está representado por la
constante de saturación Ks (Figura 2.1).

En el modelamiento de las oscilaciones en el consumo de ox́ıgeno, es importante consi-
derar aspectos más allá de los modelos de crecimiento microbiano. Uno de los aspectos que
puede desempeñar un papel crucial en la generación de oscilaciones, es el efecto de la retro-
alimentación positiva y negativa entre los componentes del sistema. Estos efectos se refieren
a cómo las variaciones en una variable afectan a otras variables del sistema, creando un ciclo
de retroalimentación que puede amplificar o amortiguar las oscilaciones.

En el caso espećıfico del cultivo de levadura, existen interacciones complejas entre el consu-
mo de ox́ıgeno, la producción de productos metabólicos y la regulación génica [69], que pueden
influir en la generación de oscilaciones. Estas interacciones se capturan mediante modelos de
retroalimentación, que utilizan ecuaciones y relaciones para describir cómo los cambios en
una variable afectan a las demás. Por ejemplo, la producción de productos metabólicos puede
influir en el consumo de ox́ıgeno, y a su vez, el consumo de ox́ıgeno puede afectar la regulación
génica [67]. Estos modelos permiten estudiar cómo estas interacciones complejas contribuyen
a las oscilaciones observadas en el sistema. En conjunto con considerar las interacciones entre
los componentes del sistema, se utilizan técnicas de análisis de estabilidad para investigar
las condiciones en las que se producen las oscilaciones. El análisis de estabilidad tiene como
objetivo determinar si los estados estacionarios del sistema son estables o inestables frente a
pequeñas perturbaciones [22]. En el contexto de las oscilaciones en el consumo de ox́ıgeno, se
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Figura 2.1: Modelo de Monod. La condición µ(Ks) = µmax

2 en el modelo de Monod representa
un punto clave en la relación entre la tasa espećıfica de crecimiento µ y la concentración
del sustrato (S). En este punto, la tasa de crecimiento alcanza la mitad de su valor máximo
µmax

2 . Esta condición es importante para comprender cómo los microorganismos responden y
se adaptan a diferentes concentraciones de sustrato en su entorno, y proporciona información
sobre el equilibrio entre la demanda metabólica y la disponibilidad de nutrientes.

exploran las bifurcaciones [25], que corresponden a cambios cualitativos en el comportamiento
del sistema a medida que se modifican los parámetros o las condiciones iniciales.

Las bifurcaciones son puntos cŕıticos donde se produce un cambio abrupto en el compor-
tamiento del sistema. Estas pueden manifestarse como cambios en la amplitud, frecuencia o
forma de las oscilaciones. El análisis de bifurcaciones permite identificar los puntos en los que
ocurren estas transiciones y comprender cómo los cambios en los parámetros del modelo o en
las condiciones iniciales pueden dar lugar a diferentes tipos de oscilaciones [32, 68, 25].

Una herramienta comúnmente utilizada en el análisis de bifurcaciones es la representación
gráfica de las bifurcaciones. Este tipo de gráfico muestra cómo cambian las soluciones del
sistema a medida que se vaŕıan los parámetros. En el contexto de las oscilaciones en el con-
sumo de ox́ıgeno, el diagrama de bifurcaciones puede representar cómo vaŕıa la amplitud de
las oscilaciones en función de un parámetro espećıfico, como la tasa espećıfica de crecimiento
microbiano. Esta representación visual ayuda a identificar las regiones en las que se producen
bifurcaciones y a comprender cómo los cambios en los parámetros influyen en las oscilaciones.
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A continuación, se muestra un ejemplo de un diagrama de bifurcaciones para ilustrar este
concepto. En este caso, se considera un sistema simplificado que describe las oscilaciones en
el consumo de ox́ıgeno en un cultivo de levadura. El parámetro que se vaŕıa es la tasa de
crecimiento espećıfico microbiano, y la variable de interés es la amplitud de las oscilaciones
(Figura 2.2).

Figura 2.2: Diagrama de bifurcación. Se observa un diagrama de bifurcaciones de la amplitud
de las oscilaciones en función de la tasa espećıfica de crecimiento µ. Se puede observar como
la amplitud de las oscilaciones varia de acuerdo a un modelo cuadrático.

El estudio de las oscilaciones en el consumo de ox́ıgeno en un cultivo continuo de leva-
dura bajo limitación de nutrientes bien podŕıa involucrar también el uso de herramientas
matemáticas más avanzadas, como los modelos de reacción-difusión [53]. Estos modelos son
especialmente útiles cuando se considera la difusión de los sustratos y productos metabólicos
a través del medio de cultivo, ya que esta difusión puede tener un impacto significativo en
las oscilaciones observadas. Anticipamos que uno de los aspectos centrales del modelo simpli-
ficado de sincronización descrito en el caṕıtulo anterior, involucra la difusión en el medio de
señales metabólicas.

Para comprender mejor el papel de la difusión en las oscilaciones, se debeŕıa utilizar la
ecuación de difusión [53], que describe cómo las concentraciones de los sustratos y productos
metabólicos cambian en función de su difusión en el medio. En combinación con las ecuaciones
cinéticas que describen el consumo de ox́ıgeno por parte de la levadura [50], se pueden obtener
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modelos más completos, que no solo tienen en cuenta las tasas de consumo y producción, sino
también la distribución espacial de las concentraciones en el quimiostato.

Para ilustrar este enfoque, consideremos la ecuación de difusión en una dimensión, que
describe cómo una concentración C de un sustrato se propaga en el medio de cultivo a lo largo
del tiempo. La ecuación de difusión se puede expresar como:

∂C

∂t
= D

∂2C

∂x2 ,

donde ∂C
∂t es la tasa de cambio de la concentración en el tiempo, D es el coeficiente de difusión

y ∂2C
∂x2 es la segunda derivada espacial de la concentración.

Al combinar la ecuación de difusión con las ecuaciones cinéticas que describen el consumo
de ox́ıgeno por parte de la levadura, se obtendŕıa un sistema de ecuaciones que permitiŕıa
simular la dinámica del consumo de ox́ıgeno. Estas ecuaciones se pueden resolver numérica-
mente utilizando métodos como el método de diferencias finitas o el método de elementos
finitos. En el contexto de las oscilaciones en el consumo de ox́ıgeno en un cultivo continuo
de levadura, el sistema de ecuaciones de reacción-difusión y cinéticas se podŕıa expresar de
la siguiente manera. La ecuación de difusión del ox́ıgeno describe la difusión espacial de la
concentración de ox́ıgeno a través del medio de cultivo. Esta se expresa como:

∂O

∂t
= D · ∇2O,

donde ∂O
∂t es la tasa de cambio de la concentración de ox́ıgeno en el tiempo, D es el coeficiente

de difusión y ∇2 es el operador laplaciano que describe la difusión espacial de la concentración.
Por otro lado, una ecuación cinética de Monod describiŕıa el consumo de ox́ıgeno por parte
de la levadura y se expresaŕıa como:

r = µ · O

K + O
,

donde r es la tasa de consumo de ox́ıgeno, µ es la tasa de crecimiento de la levadura, O es la
concentración de ox́ıgeno y K es la constante de saturación.

Una vez que se obtienen las soluciones numéricas, se pueden realizar análisis y visualiza-
ciones para comprender mejor la dinámica en el consumo de ox́ıgeno. Por ejemplo, se pueden
trazar perfiles de concentración a lo largo del tiempo y el espacio para observar la dinámica
de la difusión y consumo de ox́ıgeno en el quimiostato. Estas visualizaciones pueden propor-
cionar información valiosa sobre los patrones espaciales y temporales presentes. El modelo
de reacción-difusión también permite estudiar cómo los cambios en los parámetros del siste-
ma afectan las posibles oscilaciones. Por ejemplo, se podŕıan realizar experimentos virtuales
variando el coeficiente de difusión para analizar cómo diferentes tasas de difusión afectan la
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aparición y la amplitud de las oscilaciones en el consumo de ox́ıgeno.

En el estudio de las oscilaciones en el consumo de ox́ıgeno en cultivos continuos de le-
vadura bajo limitación de nutrientes, se han empleado técnicas de análisis no lineal y teoŕıa
de sistemas dinámicos para profundizar en la comprensión de estos fenómenos complejos
[11, 15]. Estas herramientas matemáticas avanzadas ofrecen una perspectiva más detallada de
las oscilaciones y permiten investigar la estabilidad de los puntos de equilibrio, identificar bi-
furcaciones y analizar la existencia de atractores caóticos o periódicos en el sistema [32, 68, 25].

Uno de los conceptos fundamentales en el análisis no lineal es la estabilidad de los puntos de
equilibrio. En el contexto de las oscilaciones en el consumo de ox́ıgeno, un punto de equilibrio
representa un estado en el que no hay cambios en las concentraciones de ox́ıgeno y nutrientes.
El análisis de estabilidad busca determinar si estos puntos de equilibrio son estables, es decir,
si el sistema tiende a volver a ellos después de pequeñas perturbaciones, o si son inestables
y el sistema se aleja de ellos. El análisis de estabilidad se puede realizar mediante diversas
técnicas, como el cálculo de los autovalores de la matriz jacobiana del sistema en el punto
de equilibrio [32]. Los autovalores proporcionan información sobre la estabilidad del punto
de equilibrio: si todos los autovalores tienen partes reales negativas, el punto de equilibrio es
estable, mientras que si al menos uno de los autovalores tiene una parte real positiva, el punto
de equilibrio es inestable.

Además de la estabilidad de los puntos de equilibrio, las técnicas de análisis no lineal
también permiten identificar bifurcaciones en el sistema [25]. Una bifurcación ocurre cuan-
do hay un cambio cualitativo en el comportamiento del sistema a medida que se modifican
los parámetros o las condiciones iniciales. Por ejemplo, pueden surgir bifurcaciones de Hopf
[22, 15], en las cuales el sistema pasa de un comportamiento estacionario a un comportamiento
oscilatorio a medida que se vaŕıan ciertos parámetros. Estas bifurcaciones son cruciales para
comprender cómo se generan las oscilaciones en el consumo de ox́ıgeno y cómo evolucionan a
medida que cambian las condiciones del cultivo.

La teoŕıa de sistemas dinámicos también es útil para examinar la existencia de atractores
caóticos o periódicos en el sistema [2, 68]. Un atractor es un conjunto de valores hacia el
cual tiende el sistema a medida que evoluciona en el tiempo. En el caso de las oscilaciones en
el consumo de ox́ıgeno, se pueden presentar atractores periódicos, que representan patrones
repetitivos de oscilación, o atractores caóticos, que exhiben comportamiento aparentemente
aleatorio pero determinista. Estos atractores pueden ser identificados mediante técnicas como
el mapeo de Poincaré [32], que consiste en observar la evolución del sistema en planos de
sección transversal a ciertos puntos o trayectorias.

Para ilustrar estas ideas, consideremos un sistema hipotético de consumo de ox́ıgeno en un
cultivo microbiano. Supongamos que tenemos un modelo matemático que describe la dinámi-
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ca del sistema, dado por las siguientes ecuaciones diferenciales:

dO

dt
= µ · O · N

KN + N
− k · O, (2.2)

dN

dt
= − µ · O · N

Y · (KN + N) , (2.3)

donde O representa la concentración de ox́ıgeno, N representa la concentración de nutrientes,
t es el tiempo, µ es la tasa espećıfica de crecimiento, KN es la constante de saturación de
nutrientes, k es la constante de consumo de ox́ıgeno y Y es el rendimiento en biomasa por
unidad de ox́ıgeno consumido.

La ecuación (2.2) describe la tasa de cambio de la concentración de ox́ıgeno. En el segundo
miembro de la ecuación (2.2), el primer término modela la tasa de producción de ox́ıgeno de-
bido al crecimiento de los microorganismos. Esta tasa depende de la concentración de ox́ıgeno,
la concentración de nutrientes y la constante de saturación de nutrientes KN . A medida que la
concentración de nutrientes aumenta, la tasa de producción de ox́ıgeno también aumenta, pero
se satura a medida que la concentración de nutrientes se acerca a KN . El segundo término de
la ecuación (2.1) representa la tasa de consumo de ox́ıgeno, donde k es la constante de con-
sumo. Si la tasa de producción de ox́ıgeno es mayor que la tasa de consumo, la concentración
de ox́ıgeno aumentará, y viceversa.

La ecuación (2.3) describe la tasa de cambio de la concentración de nutrientes. El segundo
miembro de la ecuación (2.3) representa la tasa de consumo de nutrientes debido al crecimien-
to de los microorganismos. Esta tasa depende de la concentración de ox́ıgeno, la concentración
de nutrientes, la constante de saturación de nutrientes KN y el rendimiento en biomasa por
unidad de ox́ıgeno consumido Y . A medida que la concentración de ox́ıgeno aumenta, la tasa
de consumo de nutrientes disminuye. El término Y · (KN + N) en el denominador del segun-
do miembro de la ecuación (2.3) asegura que la tasa de consumo de nutrientes se reduzca a
medida que la concentración de nutrientes se acerca a KN .

Para comprender mejor las propiedades dinámicas del sistema, podemos realizar simula-
ciones utilizando Python [72] y sus bibliotecas cient́ıficas, como NumPy, SciPy y Matplotlib
[55, 34]. A continuación se muestra un ejemplo de la evolución de las concentraciones de
ox́ıgeno y nutrientes en el tiempo, utilizando valores numéricos particulares para los paráme-
tros del modelo (2.2)-(2.3) (Figura 2.3).
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Figura 2.3: Gráfica de la evolución de las concentraciones de ox́ıgeno y nutrientes en un sistema
dinámico. Condiciones iniciales: O0 = 1,0, N0 = 2,0. Parámetros: µ = 0,5, KN = 1,0, k = 0,1,
Y = 0,8.

Por otro lado, además de las simulaciones numéricas, podemos aplicar técnicas de análisis
no lineal y sistemas dinámicos al modelo (2.2)-(2.3) para obtener información más detalla-
da sobre sus propiedades cualitativas. El análisis de estabilidad del sistema de ecuaciones
diferenciales nos permite examinar cómo evolucionarán las concentraciones de ox́ıgeno y nu-
trientes a lo largo del tiempo. Para ello, buscamos los puntos de equilibrio del sistema, que
son aquellos donde las tasas de cambio de las variables son cero, es decir, cuando dO

dt = 0
y dN

dt = 0. Además, podemos explorar la existencia de atractores caóticos o periódicos en el
sistema utilizando técnicas como el mapeo de Poincaré. Este método consiste en seleccionar
una sección transversal en el espacio de fase del sistema y observar cómo las trayectorias se
cruzan con esa sección. Si encontramos trayectorias que no se repiten y llenan de manera
densa el espacio, es posible que el sistema exhiba un comportamiento caótico. Por otro lado,
si las trayectorias se agrupan en puntos o ciclos, indicaŕıa la presencia de atractores periódicos.

Existen otros métodos que bien podŕıan ser empleados para abordar el problema de las
oscilaciones en el consumo de ox́ıgeno en un cultivo continuo de levadura bajo limitación de
nutrientes. Uno de estos métodos es el enfoque basado en matemática discreta [53], el cual se
utiliza para modelar el sistema como una serie de eventos discretos en lugar de una serie de
eventos de evolución continua en el tiempo. Un método, comúnmente utilizado en este enfoque,
es el modelado mediante redes de Petri [62, 13, 30]. Las redes de Petri son una representa-
ción matemática y gráfica que describe la interacción entre entidades discretas, como lugares
(representando estados) y transiciones (representando eventos o cambios). En el contexto de
las oscilaciones en el consumo de ox́ıgeno, los lugares podŕıan representar diferentes estados
metabólicos de la levadura, como la disponibilidad de nutrientes, la producción de metabolitos

22



y el consumo de ox́ıgeno, mientras que las transiciones pueden representar cambios o eventos,
como el suministro de nutrientes o la regulación de la expresión génica. El modelado mediante
redes de Petri permite capturar la dinámica discreta y los cambios en el sistema a medida que
ocurren los eventos. Se pueden definir reglas y condiciones que gobiernan la transición de un
estado a otro, lo que permite estudiar cómo las oscilaciones en el consumo de ox́ıgeno podŕıan
surgir de las interacciones discretas entre los diferentes componentes del sistema.

Para ilustrar esto, consideremos un ejemplo sencillo, utilizando ecuaciones de redes de
Petri. Supongamos que queremos modelar las oscilaciones en el consumo de ox́ıgeno en un
cultivo de levadura bajo limitación de glucosa. Podemos representar el estado del sistema con
dos lugares: “Glucosa” y “Ox́ıgeno”, y una transición llamada “Consumo de Ox́ıgeno”. Las
ecuaciones que describen este sistema podŕıan ser las siguientes:

dGlucosa
dt

= −k1 · Glucosa + k2 · Consumo de Ox́ıgeno,

dOx́ıgeno
dt

= −k3 · Ox́ıgeno + k4 · Consumo de Ox́ıgeno,

donde k1 y k3 representan las tasas de consumo de glucosa y ox́ıgeno, respectivamente, y k2 y
k4 representan las tasas de producción de glucosa y ox́ıgeno a través del consumo de ox́ıgeno.
La interpretación gráfica la anterior red de Petri se presenta en la figura 2.4.

Figura 2.4: Red de Petri. La red de Petri representa el consumo de ox́ıgeno en un cultivo de
levadura bajo limitación de glucosa. Los lugares “Glucosa” y “Ox́ıgeno” indican las cantidades
disponibles de ambos compuestos. La transición “Consumo de Ox́ıgeno” representa el proceso
de consumo. Se consume glucosa y ox́ıgeno (−k1· Glucosa y −k3· Ox́ıgeno) y se produce
glucosa y ox́ıgeno (k2· Consumo de Ox́ıgeno y k4· Consumo de Ox́ıgeno) durante el proceso.
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La red de Petri representada en la figura 2.4 describe un sistema de consumo de ox́ıgeno en
un cultivo de levadura bajo limitación de glucosa. El sistema consta de dos lugares: “Glucosa”
y “Ox́ıgeno”, que representan las cantidades de glucosa y ox́ıgeno disponibles en el cultivo,
respectivamente. La transición “Consumo de Ox́ıgeno” modela el proceso mediante el cual la
levadura consume glucosa y ox́ıgeno. Cuando la transición “Consumo de Ox́ıgeno” se dispara,
se consumen cantidades de glucosa y ox́ıgeno proporcionadas por los arcos con etiquetas “−k1·
Glucosa” y “−k3· Ox́ıgeno”, respectivamente. A su vez, la transición “Consumo de Ox́ıgeno”
produce glucosa y ox́ıgeno como resultado del proceso de consumo de ox́ıgeno, según los arcos
con etiquetas “k2· Consumo de Ox́ıgeno” y “k4· Consumo de Ox́ıgeno”.

La red de Petri de la figura 2.4 permite modelar la dinámica del sistema de consumo de
ox́ıgeno en el cultivo de levadura, considerando la influencia de las tasas de consumo de glu-
cosa y ox́ıgeno, aśı como las tasas de producción de glucosa y ox́ıgeno mediante el consumo de
ox́ıgeno. La simulación y el análisis de redes de Petri permiten explorar diferentes escenarios
y condiciones experimentales, lo que contribuye a comprender mejor las oscilaciones en el
consumo de ox́ıgeno en un cultivo de levadura bajo limitación de nutrientes.

El uso de autómatas celulares [26, 18] se ha convertido en un método valioso para com-
prender los mecanismos causales de modelos biológicos. Los autómatas celulares son modelos
matemáticos discretos, que nos permiten simular sistemas dinámicos, mediante la división del
espacio y el tiempo en unidades discretas. En el contexto espećıfico de las oscilaciones en el
consumo de ox́ıgeno, los autómatas celulares se podŕıan utilizar para representar el cultivo
de levadura como una matriz bidimensional de células, donde cada célula tiene un estado
que refleja su estado metabólico y su interacción con las células vecinas. En un modelo de
autómatas celulares, cada célula puede representar diferentes estados metabólicos relevantes,
como la presencia o ausencia de ox́ıgeno, la concentración de nutrientes o la producción de
metabolitos. Las reglas locales se definen para determinar cómo evoluciona el estado de ca-
da célula en función del estado de sus células vecinas. Estas reglas pueden reflejar procesos
biológicos o médicos como la difusión de nutrientes o drogas [44], el consumo y la producción
de ox́ıgeno, la comunicación entre células y la regulación génica. La simulación con autómatas
celulares nos brinda la capacidad de observar cómo las interacciones locales entre las célu-
las pueden dar lugar a patrones emergentes y oscilaciones en el consumo de ox́ıgeno a nivel
macroscópico. Al variar los parámetros del modelo, como las tasas de difusión, las tasas de
consumo y producción de ox́ıgeno, podemos realizar experimentos virtuales y examinar cómo
estos cambios afectan la dinámica del consumo de ox́ıgeno.

Un ejemplo concreto de un modelo de autómatas celulares para el estudio de las oscila-
ciones en el consumo de ox́ıgeno en cultivos de levadura podŕıa ser el siguiente. Supongamos
que representamos el cultivo de levadura en una matriz bidimensional de células, donde cada
célula puede tener uno de dos estados posibles: “Ox́ıgeno presente” o “Ox́ıgeno ausente”. Las
células interactúan con sus células vecinas y su estado evoluciona de acuerdo con ciertas reglas
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locales. Podemos definir una regla que establece que una célula cambiará su estado a “Ox́ıgeno
ausente” si ninguna de sus células vecinas tiene ox́ıgeno presente. Además, si una célula tiene
al menos dos células vecinas con ox́ıgeno presente, cambiará su estado a “Ox́ıgeno presente”.
Estas reglas pueden representar un proceso de difusión de ox́ıgeno entre las células y reflejar
la dependencia de la presencia de ox́ıgeno en las células vecinas.

Al simular este modelo de autómatas celulares, podemos observar cómo los patrones emer-
gentes y las oscilaciones en el consumo de ox́ıgeno surgiŕıan de las interacciones locales entre
las células. Podŕıamos analizar cómo la variación de los parámetros, como las tasas de difusión
del ox́ıgeno o la densidad inicial de células con ox́ıgeno presente, afectaŕıa la aparición y la
estabilidad de las oscilaciones.

Además del comportamiento en el consumo de ox́ıgeno, los autómatas celulares también
nos permitiŕıan explorar otros aspectos del sistema, como la relación entre la disponibilidad
de nutrientes y las oscilaciones metabólicas. Podemos extender nuestro modelo de autómatas
celulares para incluir la concentración de nutrientes y su influencia en el metabolismo celular.

Supongamos que añadimos un estado adicional a nuestras células para representar la con-
centración de nutrientes, por ejemplo, “Bajo” y “Alto”. Ahora, las células no solo interactúan
en función de su estado de ox́ıgeno, sino también en función de su estado de nutrientes. Pode-
mos establecer reglas que reflejen cómo la concentración de nutrientes influye en la producción
y consumo de ox́ıgeno.

Por ejemplo, podŕıamos definir una regla que establezca que si una célula tiene un estado
de “Ox́ıgeno presente” y “Bajo” en nutrientes, su estado de nutrientes cambiará a “Alto” y
comenzará a producir ox́ıgeno. Del mismo modo, si una célula tiene un estado de “Ox́ıgeno
ausente” y “Alto” en nutrientes, su estado de nutrientes cambiará a “Bajo” y comenzará a
consumir ox́ıgeno.

El autómata celular se representa como una matriz bidimensional de células, donde cada
célula tiene un estado que puede estar en uno de los siguientes valores:

O para indicar la ausencia de ox́ıgeno.

P para indicar la presencia de ox́ıgeno.

B para indicar un bajo nivel de nutrientes.

H para indicar un alto nivel de nutrientes.

Definimos la matriz de células como C con tamaño n × m, donde n es el número de filas y
m es el número de columnas. Cada elemento de la matriz se denota como Cij , que representa
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el estado de la célula en la posición (i, j).

Las reglas de evolución de las células se definen de la siguiente manera:

Si Cij = O y ninguna de las células vecinas (Ci−1,j , Ci+1,j , Ci,j−1, Ci,j+1) tiene ox́ıgeno
presente (P ), entonces Cij cambia a O.

Si Cij = O y al menos dos células vecinas tienen ox́ıgeno presente (P ), entonces Cij

cambia a P .

Si Cij = P y Cij tiene bajo nivel de nutrientes (B), entonces Cij cambia a H y comienza
a producir ox́ıgeno.

Si Cij = P y Cij tiene alto nivel de nutrientes (H), entonces Cij cambia a B y comienza
a consumir ox́ıgeno.

Estas reglas reflejan la difusión de ox́ıgeno entre las células y la influencia de la concen-
tración de nutrientes en la producción y consumo de ox́ıgeno. Mediante la simulación de este
autómata celular y la variación de los parámetros, como las tasas de difusión y las condiciones
iniciales de ox́ıgeno y nutrientes, podemos estudiar la aparición y estabilidad de las oscilacio-
nes metabólicas en el consumo de ox́ıgeno. Con estas nuevas reglas, podemos explorar cómo la
interacción entre la disponibilidad de nutrientes y la producción/consumo de ox́ıgeno influye
en las posibles oscilaciones metabólicas. Podemos ajustar los parámetros del modelo, como
la tasa de producción y consumo de ox́ıgeno en función de la concentración de nutrientes, y
observar cómo estos cambios afectan a la dinámica resultante.

En cuanto al análisis de los resultados de las simulaciones de autómatas celulares, se
pueden utilizar diversas herramientas visuales para representar los patrones emergentes y
las oscilaciones posiblemente observadas. Una opción es utilizar gráficas de visualización en
Python [72], como Matplotlib, para mostrar la evolución temporal del consumo de ox́ıgeno en
función del tiempo simulado (Figura 2.5).
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Figura 2.5: Autómata Celular. El autómata celular simula la evolución de un cultivo en una
matriz bidimensional. Cada celda puede tener cuatro estados: “Ausencia de ox́ıgeno”, “Pre-
sencia de ox́ıgen”, “Alto en nutrientes” y “Bajo en nutrientes”. La imagen muestra cómo los
estados de las celdas cambian a lo largo del tiempo, siguiendo reglas de actualización es-
pećıficas. La figura visualiza la dinámica del cultivo y su comportamiento en respuesta a las
condiciones locales.

Para una comprensión más detallada de las oscilaciones y los patrones espaciales, podŕıamos
utilizar visualizaciones bidimensionales de la matriz de células, donde cada celda se representa
gráficamente con diferentes colores o śımbolos según su estado metabólico y su interacción
con las células vecinas. Esto nos permitiŕıa identificar patrones espaciales emergentes y com-
prender mejor la dinámica del sistema.

En conclusión, los autómatas celulares podŕıan ser una herramienta valiosa para el estu-
dio de las oscilaciones en el consumo de ox́ıgeno en cultivos de levadura bajo limitación de
nutrientes. Mediante la simulación y el análisis de estos modelos, podŕıamos obtener conoci-
mientos fundamentales sobre los mecanismos subyacentes y explorar cómo diversos factores
influyen en las oscilaciones metabólicas. Estas investigaciones nos ayudaŕıan a comprender
mejor los sistemas biológicos y a diseñar estrategias para optimizar el cultivo de levadura y
otros procesos relacionados.

El modelado matemático, aplicado al problema de las oscilaciones en el consumo de ox́ıgeno
en un cultivo continuo de levadura bajo limitación de nutrientes, se basa en una variedad de
enfoques y herramientas. Estos enfoques incluyen, modelos cinéticos basados en la teoŕıa de
la cinética de crecimiento microbiano, modelos de retroalimentación que capturan los efectos
de retroalimentación positiva y negativa entre los componentes del sistema, técnicas de análi-
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sis de estabilidad para investigar las condiciones bajo las cuales se producen las oscilaciones,
técnicas de análisis no lineal y teoŕıa de sistemas dinámicos y podŕıan eventualmente incluir
modelos de reacción-difusión que consideran la difusión de los sustratos y productos metabóli-
cos aśı como también el enfoque basado en matemática discreta utilizando redes de Petri y
el uso de autómatas celulares, entre otros. Estas perspectivas proporcionan una comprensión
más profunda de los mecanismos subyacentes de las oscilaciones en el consumo de ox́ıgeno y
permiten explorar cómo diferentes variables y condiciones experimentales afectan el compor-
tamiento del sistema. Además, facilitan la predicción y el diseño de estrategias para controlar
y regular las oscilaciones en el consumo de ox́ıgeno en cultivos continuos de levadura bajo
limitación de nutrientes.

2.2. El modelo

El modelamiento matemático de quimiostatos se basa en fundamentos teóricos, que permiten
describir y comprender el comportamiento de los organismos en sistemas de cultivo contro-
lados. Se utilizan ecuaciones y modelos matemáticos para representar las interacciones entre
microorganismos, nutrientes y otros factores relevantes.

El principio de conservación de masa es fundamental en el modelamiento matemático de
quimiostatos. Este principio establece que, la masa total de los componentes presentes en el
sistema se conserva a lo largo del tiempo. Las ecuaciones de balance de masa se derivan a
partir de este principio y describen cómo vaŕıan las concentraciones de los componentes en
función de las tasas de crecimiento, consumo y producción. Por ejemplo, para el nutriente con
concentración S y el microorganismo con concentración X, las ecuaciones de balance de masa
seŕıan:

Ẋ = crecimiento − salida, (2.4)
Ṡ = entrada − salida − consumo. (2.5)

Estas ecuaciones permiten modelar cómo vaŕıan las concentraciones de los componentes en
función de las tasas de entrada, salida, consumo y crecimiento. Al resolver estas ecuaciones,
se puede obtener información sobre la dinámica del sistema y cómo se afectan las concentra-
ciones a lo largo del tiempo.

El modelo mı́nimo de quimiostato [29] ha sido desarrollado con el objetivo de proporcionar
una descripción detallada de lo que ocurre en un cultivo de microorganismos cuando crece
en un bioreactor alimentado de manera continua, manteniendo un volumen constante V y
condiciones de mezcla perfecta [11]. En este sistema, todos los nutrientes necesarios para el
crecimiento del cultivo se incorporan en el flujo de entrada F (volumen por unidad de tiem-
po), pero solo uno de ellos actúa como limitante para el crecimiento, lo que significa que su
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disponibilidad controla la tasa de crecimiento de la biomasa.

El modelo se basa en dos variables de estado principales: la concentración de biomasa
X y la concentración del sustrato limitante S. Estas variables representan las cantidades de
biomasa presente en el cultivo y la concentración del sustrato limitante en el medio de culti-
vo, respectivamente. Las ecuaciones de equilibrio del modelo describen cómo estas variables
cambian con el tiempo:

Ẋ = (µ − d)X, (2.6)

Ṡ = d(Sin − S) − µ

Y
X. (2.7)

La ecuación de equilibrio (2.6) se refiere a la tasa de cambio de la concentración de bio-
masa X. Esta tasa de cambio está determinada por la diferencia entre la tasa de crecimiento
espećıfico µ y la tasa de dilución d del cultivo, donde d = F

V . La tasa de crecimiento espećıfico
µ es una medida de la velocidad a la cual la biomasa se acumula en el cultivo, mientras que la
tasa de dilución d representa la velocidad a la cual el medio de cultivo se retira del sistema.
Si la tasa de crecimiento espećıfico es mayor que la tasa de dilución, la biomasa aumentará
con el tiempo.

La ecuación de equilibrio (2.7) describe la tasa de cambio de la concentración del sustrato
limitante S. Esta tasa de cambio está influenciada por varios factores. En primer lugar, la
tasa de dilución d afecta la concentración del sustrato limitante, ya que el sustrato se retira
del sistema a una velocidad determinada por esta tasa. Además, la entrada de sustrato limi-
tante en el flujo de alimentación, representada por Sin, también influye en la concentración
del sustrato limitante. Por último, la tasa de crecimiento espećıfico µ tiene un efecto en la
concentración del sustrato limitante, ya que las células en crecimiento consumen el sustrato
para su metabolismo y multiplicación. El coeficiente de rendimiento de conversión de sustrato
en biomasa Y indica la cantidad de biomasa producida a partir del sustrato consumido.

Las ecuaciones de equilibrio (2.6)-(2.7) permiten describir de manera matemática el com-
portamiento del cultivo en el quimiostato y su interacción con los nutrientes limitantes y la
biomasa en crecimiento. A través de este modelo, podemos analizar cómo vaŕıan las concen-
traciones de biomasa y sustrato limitante en función del tiempo y los parámetros del sistema.
Esto proporciona información importante sobre el crecimiento y la dinámica del cultivo en el
quimiostato, lo que puede ser útil para optimizar las condiciones de cultivo y maximizar la
producción de biomasa o metabolitos de interés.

2.2.1. Supuestos básicos del modelo

Un modelo matemático se funda sobre sus supuestos. La elección de los elementos que cons-
tituyen el punto de partida, es un tema central en la construcción de modelos. Este no es el
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lugar para realizar una discusión detallada acerca del rol o papel que tienen los supuestos en
un modelo matemático. Nos limitaremos a exponer los supuestos básicos para este modelo,
sin discutir a fondo su pertinencia epistémica. Intentaremos que la pertinencia de estos, para
efectos de la modelización del fenómeno de interés, resulte lo más natural posible. Trataremos,
por tanto, que la justificación de estos sea exactamente lo contrario a un tour de force. El
primero y más general de los supuestos es que no carece de valor teórico simplificar de forma
radical la complejidad biológica con el objeto de obtener un dibujo simplificado de esta.

El modelo matemático se basa en el esquema de acoplamiento del ciclo metabólico - ciclo
celular, propuesto por Burnetti et al.[10] descrito y representado en la Figura 1.7 del caṕıtulo
anterior.

Supondremos que las células de levadura admiten dos estados celulares, el estado de com-
promiso y el estado de desarrollo. Supondremos que la población de células puede segmentarse
en cualquier instante en dos subpoblaciones suficientemente bien diferenciadas; la subpobla-
ción de células que se encuentran en estado de desarrollo y la subpoblación de las células
que se encuentran en el estado de compromiso. El estado de compromiso lo definiremos co-
mo la fase en que se encuentra una célula que se ha comprometido irremisiblemente con su
progresión en el ciclo de división celular, vale decir, corresponde al estado de las células que
en su mayoŕıa responden positivamente al llamado a iniciar división celular y por lo tanto
ya han atravesado el punto de restricción, más conocido como Start. A la concentración de
biomasa de las células que se encuentran en este estado la denotaremos con la letra C y a la
concentración de biomasa del resto de las células, o sea, las que no han pasado por el punto de
restricción, y que por tanto han sido refractarias a las señales de inicio, la denotaremos con la
letra D. Existe evidencia emṕırica de la existencia de estos estados [9] y de la importancia e
interés que suscita para el estudio del YMC [46]. La comprensión del acoplamiento YMC-CDC
y en particular el entendimiento de su conexión con los estados HOC y LOC podŕıan verse
robustecidos en virtud de su consideración. De acuerdo con esto, asumimos que la relación
de acoplamiento CDC-YMC y en concreto, la hipótesis de que el YMC controla el paso de
las células por el Start [9], podŕıa reconsiderarse sobre el trasfondo del modelo de los estados
celulares de compromiso y desarrollo.

Supondremos también, que la limitación del crecimiento celular es una función bien cono-
cida de la concentración de los nutrientes glucosa y ox́ıgeno disuelto, de acuerdo a una cinética
del tipo doble Monod [4, 50].

2.2.2. Las ecuaciones de cambio

Siguiendo el modelo mı́nimo de quimiostato [29], definimos ecuaciones de equilibrio para
las variables de estado concentración de células en estado de compromiso C , concentración
de células en estado de desarrollo D , concentración de glucosa G y concentración de ox́ıgeno
disuelto O. Antes de eso definiremos la cinética del crecimiento celular. Supondremos que los
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conjuntos de células C y D crecen de manera desigual. El ritmo del crecimiento celular para
ambos grupos de células depende únicamente de las concentraciones de ox́ıgeno y glucosa
presentes en el cultivo. La velocidad de crecimiento tiene un ĺımite que no se puede superar
aunque se incremente de forma arbitraria la concentración de nutrientes. Este ĺımite superior
de la velocidad espećıfica de crecimiento es usualmente denotado por µmax. En este caso las
tasas de crecimiento espećıfico serán µmax para las células en estado de desarrollo y νmax para
las células en estado de compromiso. Esto quiere decir que el incremento de la velocidad de
crecimiento espećıfico disminuye lentamente acercándose de forma asintótica a µmax y νmax

respectivamente . El modelo más usual que representa este hecho es el creado por Jacques
Monod [50], el año 1949, no obstante, nosotros usaremos una adaptación de este modelo para
dos sustratos conocida como doble Monod [4]:

µ(G, O) = µmax( G

KGD
+ G

)( O

KOD
+ O

), (2.8)

donde µmax es la tasa espećıfica de crecimiento máxima para la subpoblación de células en
estado de desarrollo. KGD

y KOD
son los valores de saturación media de la glucosa y el

ox́ıgeno disuelto asociados a las células en estado de desarrollo. De forma análoga la función
de crecimiento para la subpoblación de células en estado de compromiso es:

ν(G, O) = νmax( G

KGC
+ G

)( O

KOC
+ O

), (2.9)

donde νmax es la tasa espećıfica de crecimiento máxima para la subpoblación de células en
estado de compromiso. KGC

y KOC
son los valores de saturación media de la glucosa y el

ox́ıgeno disuelto asociados a las células en estado de compromiso.

Si supusiéramos que, sólo hubiesen células en estado de compromiso, entonces la tendencia
a aumentar de C sólo se veŕıa compensada por la tendencia a disminuir modulada por la tasa
de dilución d:

Ċ = (ν − d)C. (2.10)

Sin embargo, sólo una fracción del total de las células se muestran dispuestas a iniciar el
CDC. Por esta razón debemos incluir en el sistema una ecuación que represente la dinámica
de la fracción de células refractarias al llamado a iniciar CDC. Si toda la población del cultivo
consistiese sólo de células refractarias en estado de desarrollo D , el crecimiento de la población
de células sólo se encontraŕıa sujeto a la siguiente ecuación de cambio:

Ḋ = (µ − d)D. (2.11)
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Según la idea expuesta por Burnetti et al [10, 9] en cada YMC un grupo de células inicia de
forma simultánea CDC llamando a las que se encuentran en una zona de desarrollo próximo
al punto de restricción Start a comprometerse con el CDC junto a ellas. En consecuencia una
fracción a de células en desarrollo responden positivamente al llamado a iniciar CDC. Las
ecuaciones de cambio para las concentraciones de células C y D que representan este hecho
son:

Ċ = (νD − d)C, (2.12)
Ḋ = (µ − aC − d)D. (2.13)

A fin de modelar la concentración de la glucosa se debe tener en cuenta que su ecuación de
cambio, debe poseer dos términos principales que interactúan entre śı. El primero seŕıa (Gin −
G)d y representa la diferencia entre las concentraciones de glucosa entrante Gin y saliente G a
una tasa de dilución d. El segundo término seŕıa − µ

YGD
D − ν

YGC
C y representaŕıa, en términos

términos generales, el ritmo al cual las células consumen glucosa según sus respectivas tasas de
crecimiento y según su rendimiento o eficiencia en la conversión masa de glucosa en biomasa:

Ġ = (Gin − G)d − µ

YGD

D − ν

YGC

C. (2.14)

Finalmente, para la ecuación de cambio del ox́ıgeno disuelto en el cultivo, debemos mencio-
nar algunos supuestos importantes. En el modelo no consideraremos expĺıcitamente el papel
que desempeña al interior de la vasija el ox́ıgeno presente en el espacio gaseoso. Tampoco
consideraremos de forma expĺıcita el ox́ıgeno disuelto que abandona el cultivo en el efluente,
ni consideraremos el ox́ıgeno disuelto en el medio fresco que entra al bioreactor. Tampoco to-
maremos por separado el ox́ıgeno que entra en forma de aire al sistema. Sólo consideraremos el
efecto final que podŕıan producir estos factores. Para efectos de este modelo la concentración
de ox́ıgeno disuelto en el medio ĺıquido siempre tiende a un nivel de saturación máximo y la
velocidad con la que este vaŕıa depende sólo de su velocidad de transferencia de masa al medio
ĺıquido. Para representar en tales términos la dinámica de la concentración de ox́ıgeno disuelto
usaremos el modelo de la diferencia entre la velocidad con la que el ox́ıgeno se disuelve en el
medio ĺıquido y la velocidad con la que este es consumido por las células, esto es, la diferencia
entre la tasa de transferencia del ox́ıgeno (OTR) y la tasa de consumo del ox́ıgeno disuelto
(OUR) [10]:

Ȯ = OTR - OUR .

La OTR está compuesta por la concentración de saturación del ox́ıgeno en el medio ĺıquido
O∗, esto es, la concentración del ox́ıgeno disuelto al cual el sistema se acerca; por la concen-
tración del ox́ıgeno disuelto en un instante cualquiera O y por el coeficiente de transferencia
de masa del ox́ıgeno k. k(O∗ −O) representa el ritmo al que vaŕıa la concentración del ox́ıgeno
disuelto en el medio. La tasa de consumo de ox́ıgeno es −( µ

YOD
D+ ν

YOC
C) y representa el ritmo
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al cual las células consumen ox́ıgeno disuelto según su velocidad de crecimiento, modulado
por el rendimiento de conversión en biomasa del ox́ıgeno disuelto.

Resumiendo, las ecuaciones de cambio de nuestra propuesta para un modelo matemático
de oscilaciones en el consumo de ox́ıgeno en un cultivo continuo de levadura en condiciones
de limitación de nutrientes, viene dado por:

Ċ = (νD − d)C, (2.15)
Ḋ = (µ − aC − d)D, (2.16)

Ġ = (Gin − G)d − ( µ

YGD

D + ν

YGC

C), (2.17)

Ȯ = k(O∗ − O) − ( µ

YOD

D + ν

YOC

C). (2.18)

2.3. Fundamentos de simulación numérica

2.3.1. Campos de vectores

El campo de vectores asociado al modelo mı́nimo de quimiostato [29] se refiere a la repre-
sentación gráfica de las ecuaciones diferenciales en el espacio de las variables de estado, en
este caso, la concentración de biomasa X y la concentración del sustrato limitante S. Para
visualizar el campo de vectores [22, 32], se asigna un vector a cada punto del espacio de las
variables de estado, donde la dirección y la magnitud del vector representan la tasa de cambio
de X y S en ese punto. Es decir, en cada punto (X, S) se traza un vector que indica hacia
dónde y con qué velocidad cambiaŕıan las concentraciones de biomasa y sustrato. Usando las
ecuaciones de equilibrio del modelo mı́nimo de quimiostato:

Ẋ = (µ − d)X, (2.19)

Ṡ = d(Sin − S) − µ

Y
X. (2.20)

Podemos obtener las derivadas Ẋ y Ṡ en términos de X y S. El campo de vectores se
construye trazando estos vectores en el espacio (X, S). Para hacerlo, se eligen una serie de
puntos en el espacio (X, S) y se calcula el vector correspondiente a cada punto utilizando las
ecuaciones diferenciales. Por ejemplo, para un punto (X1, S1), se calcula Ẋ1 y Ṡ1 usando las
ecuaciones (1) y (2). Luego, se traza un vector desde el punto (X1, S1) en la dirección deter-
minada por Ẋ1 y Ṡ1, y con una longitud proporcional a la magnitud de estas derivadas. Este
proceso se repite para varios puntos en el espacio de las variables de estado, lo que resulta
en una serie de vectores que representan el campo de vectores asociado al modelo. La densi-
dad de los vectores y su longitud relativa se pueden ajustar para mejorar la visualización y
comprensión del campo de vectores [48]. El campo de vectores proporciona información visual
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sobre las trayectorias de las soluciones del sistema de ecuaciones diferenciales. Por ejemplo,
muestra cómo las concentraciones de biomasa y sustrato cambiaŕıan en función de las condi-
ciones iniciales y los parámetros del sistema. También revela la existencia de puntos fijos o de
equilibrio, donde las derivadas son cero y los vectores apuntan hacia estos puntos. Analizan-
do el campo de vectores, se pueden identificar caracteŕısticas importantes del sistema, como
puntos fijos, trayectorias estables o inestables, y regiones donde las concentraciones pueden
crecer o disminuir. Estas observaciones cualitativas del campo de vectores pueden ayudar a
comprender el comportamiento dinámico del modelo mı́nimo de quimiostato y proporcionar
información sobre el crecimiento y la interacción de la biomasa y el sustrato en el sistema.

Figura 2.6: Campo de vectores del modelo mı́nimo. La dirección, el sentido y la magnitud de
las flechas indican que el aumento en la concentración de biomasa X, implica una disminución
de la concentración de sustrato limitante S.

La gráfica de la figura 2.6 muestra el campo de vectores asociado al modelo mı́nimo de
quimiostato. En el eje x se representa la concentración de biomasa X y en el eje y se representa
la concentración de sustrato limitante S. Cada flecha en el gráfico representa un vector que
indica la dirección y magnitud de las derivadas Ẋ y Ṡ en cada punto del espacio de variables.
El campo de vectores proporciona información visual sobre cómo cambian las concentraciones
de biomasa y sustrato en función de sus valores iniciales y los parámetros del sistema. La
dirección del vector indica el sentido en el cual las concentraciones están cambiando, mientras
que la longitud del vector representa la velocidad o tasa de cambio en ese punto. En la gráfica,
las flechas más largas indican una mayor velocidad de cambio de las concentraciones, mientras
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que las flechas más cortas representan una tasa de cambio más lenta. Además, la orientación
de las flechas muestra la dirección del cambio: hacia arriba o hacia abajo en el eje x indica un
aumento o disminución de la concentración de biomasa, respectivamente, mientras que hacia
la derecha o hacia la izquierda en el eje y indica un aumento o disminución de la concentración
de sustrato, respectivamente.

El campo de vectores puede ayudar a identificar caracteŕısticas importantes del sistema,
como puntos fijos o de equilibrio, trayectorias estables o inestables, y regiones donde las con-
centraciones pueden aumentar o disminuir. Esto permite comprender mejor el comportamiento
dinámico del modelo y obtener información cualitativa sobre la interacción entre la biomasa y
el sustrato en el sistema de cultivo. En resumen, la gráfica del campo de vectores brinda una
representación visual del modelo mı́nimo de quimiostato, mostrando cómo las concentraciones
de biomasa y sustrato cambian en función de sus valores iniciales y los parámetros del sistema.

2.3.2. Diagramas de fase

Un diagrama de fases asociado al modelo mı́nimo de quimiostato es una representación gráfica
que muestra las posibles trayectorias y estados de equilibrio del sistema en el espacio de las
variables de estado, es decir, la concentración de biomasa X y la concentración de sustrato
limitante S [32, 22, 48]. Para construir el diagrama de fases, se considera el comportamiento
de las soluciones del sistema de ecuaciones diferenciales a lo largo del tiempo. Se exploran
las diferentes combinaciones de concentraciones de biomasa y sustrato iniciales, y se estudia
cómo evolucionan estas concentraciones en el tiempo. Las trayectorias en el diagrama de fases
representan las soluciones del sistema de ecuaciones diferenciales y muestran cómo las concen-
traciones de biomasa y sustrato cambian a medida que el tiempo avanza. Cada punto en una
trayectoria corresponde a un estado del sistema en un momento espećıfico. La forma de las
trayectorias proporciona información sobre las dinámicas y los patrones de comportamiento
del sistema. Los puntos fijos o de equilibrio son estados estables en los que las concentraciones
de biomasa y sustrato no cambian con el tiempo. Estos puntos se pueden identificar en el
diagrama de fases como puntos en los que las trayectorias convergen o donde las derivadas
Ẋ y Ṡ son cero. Los puntos fijos pueden ser atractores, lo que significa que las soluciones
cercanas a ellos convergerán hacia ellos en el tiempo, o pueden ser repulsores, donde las solu-
ciones cercanas se alejarán de ellos. Además de las trayectorias y los puntos fijos, el diagrama
de fases también puede incluir regiones que representan diferentes comportamientos del sis-
tema. Por ejemplo, puede haber regiones donde las concentraciones de biomasa y sustrato
crecen indefinidamente, regiones donde las concentraciones disminuyen hacia cero o regiones
donde las concentraciones oscilan periódicamente. El análisis del diagrama de fases permite
comprender el comportamiento global del sistema y cómo diferentes parámetros o condicio-
nes iniciales pueden influir en las trayectorias y los estados de equilibrio. También ayuda a
identificar transiciones cualitativas, como bifurcaciones o cambios en las dinámicas del sistema.

35



En resumen, el diagrama de fases asociado al modelo mı́nimo de quimiostato proporciona
una representación visual de las posibles trayectorias y estados de equilibrio del sistema en el
espacio de las variables de estado. Permite analizar y comprender el comportamiento dinámico
del sistema, incluyendo la existencia de puntos fijos, las dinámicas de las trayectorias y las
regiones de comportamiento espećıficas (Figura 2.7).

Figura 2.7: Diagrama de fases del modelo mı́nimo. El diagrama de fases de X y S muestra
que a medida que aumenta la población X disminuye la concentración de sustrato S.

2.3.3. Diagramas de bifurcación

Un diagrama de bifurcación asociado al modelo mı́nimo de quimiostato es una representación
gráfica que muestra cómo cambian las soluciones del sistema en respuesta a cambios en los
parámetros del modelo. En particular, se enfoca en identificar y visualizar las bifurcaciones,
que son cambios cualitativos en las dinámicas del sistema a medida que los parámetros vaŕıan
[32, 22, 48]. En el contexto del modelo mı́nimo de quimiostato, los parámetros relevantes pue-
den ser la tasa de crecimiento espećıfico µ, la tasa de dilución d, la concentración de sustrato
en la entrada Sin, el rendimiento de biomasa respecto al sustrato Y , entre otros. Al modificar
estos parámetros, se pueden observar cambios significativos en las trayectorias y los estados
de equilibrio del sistema. El diagrama de bifurcación muestra cómo las soluciones del sistema
vaŕıan en función de un parámetro espećıfico, mientras se mantienen los demás parámetros
constantes. Para construir el diagrama, se elige un parámetro como el eje x y se grafican
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las soluciones correspondientes en el espacio de las variables de estado (por ejemplo, X y S)
en el eje y. El diagrama de bifurcación puede revelar diferentes tipos de bifurcaciones, como
bifurcaciones de equilibrio, bifurcaciones de Hopf, bifurcaciones transcŕıticas, bifurcaciones de
silla-nodo, entre otras. Cada tipo de bifurcación está asociado con cambios espećıficos en el
comportamiento del sistema. Por ejemplo, una bifurcación de equilibrio puede ocurrir cuando
un punto de equilibrio cambia de estabilidad. En el diagrama de bifurcación, se observaŕıa
una rama estable y una rama inestable que se encuentran en un punto cŕıtico llamado punto
de bifurcación. Una bifurcación de Hopf puede ocurrir cuando una solución periódica emerge
a partir de un punto de equilibrio estable a medida que un parámetro vaŕıa. En el diagrama
de bifurcación, se veŕıan regiones donde las trayectorias del sistema son periódicas.

En general, el diagrama de bifurcación proporciona una representación visual de cómo el
comportamiento del sistema cambia cualitativamente a medida que los parámetros se modifi-
can. Permite identificar puntos cŕıticos, puntos de bifurcación y transiciones entre diferentes
reǵımenes dinámicos. También es una herramienta útil para comprender la estabilidad, las
oscilaciones y otras caracteŕısticas emergentes del modelo mı́nimo de quimiostato en función
de sus parámetros (Figura 2.8):

Figura 2.8: Diagrama de bifurcación del modelo mı́nimo. El diagrama de bifurcación del
modelo mı́nimo muestra como las concentraciones de equilibrio de X y S vaŕıan en función
de la variación del parámetro de dilución d. Cuando d crece observa que la concentración de
equilibrio para S disminuye.
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2.3.4. Diagrama de retorno

Un diagrama de retorno, también conocido como diagrama de retardo o diagrama de tiempo
retrasado o gráfica de Poincaré [22] es una herramienta que se utiliza para visualizar la relación
entre una variable de interés y su propio valor en un instante anterior o posterior en el tiempo.
En el contexto del modelo mı́nimo de quimiostato, podemos construir un diagrama de retorno
para la variable de interés, ya sea la concentración de biomasa X o la concentración de
sustrato S. Para ilustrar esto, consideremos el caso de construir un diagrama de retorno para
la concentración de biomasa X adelantada una unidad de tiempo. Las ecuaciones diferenciales
del modelo mı́nimo de quimiostato son:

Ẋ = (µ − d)X, (2.21)

Ṡ = d(Sin − S) − µ

Y
X. (2.22)

Si queremos construir un diagrama de retorno para X adelantada una unidad de tiempo,
podŕıamos utilizar la siguiente relación:

X(t + 1) = X(t) + ∆t · Ẋ(t). (2.23)

donde X(t + 1) representa el valor de X en el tiempo t + 1, X(t) representa el valor de X en
el tiempo t, ∆t es el paso de tiempo y Ẋ(t) es la tasa de cambio de X en el tiempo t. Para
construir el diagrama de retorno, podemos seguir estos pasos:

1. Inicializar un arreglo vaćıo para almacenar los valores de X en diferentes instantes de
tiempo.

2. Elegir un valor inicial para X, por ejemplo, X0 = 1,0.

3. Para cada instante de tiempo t, calcular el valor de X adelantado una unidad de tiempo
utilizando la relación mencionada anteriormente.

4. Almacenar el valor calculado de X en el arreglo.

5. Repetir los pasos 3 y 4 para diferentes instantes de tiempo.

Una vez que se hayan calculado los valores de X para diferentes instantes de tiempo,
se pueden graficar en un diagrama de retorno, donde el eje x representa el valor actual de
X y el eje y representa el valor de X adelantado una unidad de tiempo. El diagrama de
retorno puede revelar patrones y comportamientos interesantes en la dinámica del sistema.
Por ejemplo, se pueden observar perturbaciones, ciclos ĺımite, atracciones hacia puntos fijos o
comportamientos caóticos según la relación entre los valores actuales y futuros de la variable
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de interés. Es importante tener en cuenta que el paso de tiempo ∆t utilizado en el cálculo
de X adelantado una unidad de tiempo puede influir en la precisión y la apariencia del dia-
grama de retorno. Un paso de tiempo demasiado grande puede ocultar detalles finos en el
comportamiento dinámico del sistema, mientras que un paso de tiempo demasiado pequeño
puede llevar a un mayor costo computacional. En resumen, un diagrama de retorno es una
herramienta útil para explorar la relación entre una variable de interés y su valor adelantado
o atrasado en el tiempo. En el contexto del modelo mı́nimo de quimiostato, podemos utilizar
un diagrama de retorno para analizar la dinámica de la concentración de biomasa o sustrato
en función de sus valores en instantes de tiempo anteriores o posteriores (Figura 2.9).

Figura 2.9: Diagrama de retorno. El alineamiento parejo a la linea de identidad y la regularidad
en la distancia entre los puntos, indica un posible comportamiento periódico de X.
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2.3.5. Soluciones numéricas

El método de Adams-Bashforth-Moulton [14] es un método numérico utilizado para aproxi-
mar las soluciones de ecuaciones diferenciales ordinarias. Es especialmente útil para resolver
ecuaciones diferenciales que no tienen soluciones anaĺıticas exactas o cuando no es factible en-
contrarlas. En el contexto del modelo mı́nimo de quimiostato, las ecuaciones diferenciales que
describen la dinámica de las variables de estado (concentración de biomasa X y concentración
de sustrato S) son:

Ẋ = (µ − d)X, (2.24)

Ṡ = d(Sin − S) − µ

Y
X. (2.25)

El objetivo es encontrar las soluciones numéricas de estas ecuaciones diferenciales utili-
zando el método de Adams-Bashforth-Moulton. El método se basa en la aproximación de la
derivada de la variable de estado utilizando diferencias finitas hacia atrás y hacia adelante en
el tiempo. El método de Adams-Bashforth-Moulton se aplica en pasos de tiempo discretos.
Dado un paso de tiempo h, las soluciones numéricas se calculan de la siguiente manera:

Inicialización: Se conocen los valores iniciales de las variables de estado, es decir, X0 y
S0.

Paso de Adams-Bashforth: Utilizando el método de Adams-Bashforth, se calcula una
aproximación de las variables de estado en el siguiente paso de tiempo (ti+1). Para
hacer esto, se utiliza la información de los pasos de tiempo anteriores (ti, ti−1, . . .) y las
aproximaciones previas de las variables de estado. Por ejemplo, para X, la aproximación
en el siguiente paso de tiempo se calcula como:

X
(AB)
i+1 = Xi + h

2 (3(µi − di)Xi − (µi−1 − di−1)Xi−1) . (2.26)

Paso de Adams-Moulton: Utilizando el método de Adams-Moulton, se mejora la apro-
ximación obtenida en el paso anterior. Para esto, se utiliza la información adicional del
paso de tiempo actual (ti+1) y se corrige la aproximación de las variables de estado. Por
ejemplo, para X, la corrección en el siguiente paso de tiempo se calcula como:

Xi+1 = Xi + h

2
(
(µi+1 − di+1)X(AB)

i+1 + (µi − di)Xi

)
. (2.27)

Repetir los pasos 2 y 3 para avanzar en el tiempo hasta alcanzar el instante final deseado.

Es importante destacar que el método de Adams-Bashforth-Moulton requiere conocer los
valores de las tasas de crecimiento espećıfico µ y las tasas de dilución d en cada paso de
tiempo. Estos valores pueden ser constantes o depender de otras variables o condiciones del
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sistema. Además, la elección del paso de tiempo h influye en la precisión y estabilidad del
método, siendo necesario encontrar una elección adecuada para obtener resultados precisos y
estables.

El método de Adams-Bashforth-Moulton es un método de paso múltiple, lo que significa
que utiliza información de múltiples pasos anteriores para calcular las soluciones numéricas en
cada paso de tiempo. Esto proporciona una aproximación más precisa en comparación con los
métodos de paso único, como el método de Euler. Al aplicar el método de Adams-Bashforth-
Moulton a las ecuaciones diferenciales del modelo mı́nimo de quimiostato, se obtendrán so-
luciones numéricas que representan la evolución de las variables de estado (concentración
de biomasa y concentración de sustrato) en el tiempo. Estas soluciones permiten visualizar
cómo vaŕıan las variables en función del tiempo y pueden proporcionar información sobre el
comportamiento del sistema. Es importante destacar que las soluciones numéricas obtenidas
mediante el método de Adams-Bashforth-Moulton son aproximaciones y no representan las
soluciones exactas de las ecuaciones diferenciales. La precisión de las soluciones dependerá
de la elección adecuada de los parámetros del método, como el paso de tiempo y el orden
del método utilizado. Además, es fundamental tener en cuenta las condiciones iniciales y los
valores de los parámetros del sistema al aplicar el método de Adams-Bashforth-Moulton. Pe-
queñas variaciones en estos valores pueden tener un impacto significativo en las soluciones
numéricas obtenidas (Figura 2.10).

Figura 2.10: Soluciones numéricas. La gráfica muestra la evolución de la población microbiana
X y la concentración de sustrato S a lo largo del tiempo. Se utilizan pasos de predicción y
corrección para obtener las soluciones numéricas con el método Adams-Bashforth-Moulton,
que se representan como puntos en la gráfica. Esto nos permite visualizar cómo cambian X y
S en función del tiempo y comprender mejor la dinámica del sistema quimiostato.
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2.3.6. Optimización de parámetros

Tras un detallado estudio de la variación de parámetros y el análisis de los diagramas de
fase para identificar patrones oscilatorios en el sistema dinámico en cuestión, se da paso a
una etapa crucial: la optimización de los parámetros. Para abordar este desaf́ıo, se utilizará
el método de algoritmos genéticos, una poderosa técnica inspirada en la evolución biológica
que permite encontrar conjuntos óptimos de parámetros para maximizar la probabilidad de
producir oscilaciones en la variable de interés. Los algoritmos genéticos aplican principios de
selección natural, cruce y mutación para buscar soluciones óptimas en espacios de búsqueda
complejos y multidimensionales. Esta metodoloǵıa ha demostrado su eficacia en una amplia
gama de problemas de optimización y se espera que proporcione una herramienta poderosa
para la optimización de parámetros en el presente estudio.

Algoritmos genéticos

Los algoritmos genéticos son métodos computacionales de búsqueda y optimización basados
en los principios de la evolución biológica y la genética [23]. Son utilizados para resolver
problemas complejos que involucran la optimización de una función objetivo, la selección de
conjuntos de parámetros o la exploración de espacios de búsqueda amplios.[33] Estos algorit-
mos se inspiran en la teoŕıa de la evolución de Charles Darwin y en los mecanismos genéticos
de herencia y selección natural.

Un algoritmo genético simula la evolución de una población de soluciones candidatas a lo
largo de múltiples generaciones. Cada solución candidata, también conocida como individuo,
está representada por un conjunto de genes o cromosomas, que codifican la información nece-
saria para definir una solución al problema en cuestión. Estos genes pueden ser tratados como
valores numéricos, cadenas de bits u otras representaciones según el tipo de problema.

Durante el proceso evolutivo, los algoritmos genéticos aplican operadores genéticos como
la selección, el cruce (crossover) y la mutación para generar nuevas soluciones en cada ge-
neración. La selección favorece a los individuos más aptos, es decir, aquellos que presentan
una mejor calidad o valor objetivo. El cruce combina los genes de dos individuos para crear
descendientes con caracteŕısticas heredadas de sus padres. La mutación introduce cambios
aleatorios en los genes de los individuos para fomentar la exploración del espacio de búsqueda.

A medida que progresa el algoritmo, la población evoluciona y converge hacia soluciones
más óptimas en términos de la función objetivo. Esto se logra mediante la reproducción di-
ferencial de los individuos, donde los mejores individuos tienen una mayor probabilidad de
ser seleccionados como padres y transmitir sus caracteŕısticas favorables a las generaciones
futuras. La evolución se repite durante un número predeterminado de generaciones o hasta
que se cumpla un criterio de convergencia.
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Los algoritmos genéticos han demostrado su eficacia en una amplia gama de problemas
complejos, como la optimización de funciones matemáticas, el diseño de circuitos, la planifica-
ción de tareas, la optimización de rutas, entre otros [33]. Además, ofrecen ventajas en términos
de robustez, capacidad de exploración y capacidad para encontrar soluciones cercanas al ópti-
mo global en problemas multidimensionales o con múltiples óptimos locales.

En la implementación espećıfica de este algoritmo genético, se utilizaron las siguientes
libreŕıas y funciones espećıficas:

Random: Se utilizó para generar números aleatorios en la generación de la población
inicial y en la mutación de los individuos.

Numpy: Se empleó para realizar cálculos numéricos, como la creación de un vector de
tiempo y la manipulación de matrices.

Scipy.integrate.odeint: Se importó la función odeint de la sublibreŕıa Integrate de Scipy.
Esta función fue utilizada para resolver el sistema de ecuaciones diferenciales.

A continuación describimos el proceso de implementación del algoritmo genético en Python
[72], adaptado para la optimización de parámetros de nuestro modelo:

1. Definición de la función de aptitud (fitness): Se usan las ecuaciones de nuestro modelo y
los valores iniciales de sus parámetros para definir una función que evalúa la probabilidad
de oscilación en la variable O. Los parámetros del sistema son pasados como entrada a
esta función.

2. Inicialización de la población (init population): Se definieron los rangos dentro de los
cuales se generarán los individuos de la población inicial. Cada individuo representa un
conjunto de parámetros aleatorios dentro de estos rangos.

3. Selección de padres (select parents): Se utilizó la función de aptitud para evaluar la
calidad de cada individuo en la población actual. Los individuos con mayor aptitud
tienen una mayor probabilidad de ser seleccionados como padres para la siguiente gene-
ración. La información entregada por el sistema dinámico y los valores iniciales de los
parámetros influyen en la evaluación de la aptitud de cada individuo.

4. Cruce de padres (crossover): Se utilizaron las combinaciones de valores de los parámetros
heredados de los padres para generar dos descendientes.

5. Mutación de individuos (mutate): Se introdujeron cambios aleatorios en los valores de
los parámetros de un individuo. Los valores iniciales de los parámetros del sistema y
la información que entrega el sistema dinámico definen los rangos permitidos para la
mutación.
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6. Optimización de parámetros (optimize parameters): Se usó la función de aptitud para
evaluar la calidad de cada individuo en cada generación. El objetivo es encontrar el
conjunto de parámetros que maximice la probabilidad de oscilación en la variable O
del sistema, utilizando la información entregada por el sistema dinámico y los valores
iniciales de los parámetros.

7. Obtención de los parámetros óptimos: Al finalizar la ejecución del algoritmo genético, se
devuelve el individuo con la mejor aptitud encontrado durante todas las generaciones, es
decir, el conjunto de parámetros óptimos. Estos parámetros se imprimen en la pantalla
para su visualización.

En resumen, el proceso inicia con la fase de inicialización en la que se definen y asignan
valores a los parámetros iniciales. A continuación, se procede a la evaluación de individuos en
la población mediante la función de aptitud. La decisión sobre la mejor aptitud condiciona
la selección de individuos para el cruce. Durante la fase de cruce, se generan descendientes
combinando los valores de los parámetros de los padres seleccionados. Posteriormente, se lleva
a cabo la fase de reemplazo, donde los nuevos individuos reemplazan a los antiguos en la
población. Este ciclo se repite hasta que se cumple la condición de finalización, momento en
el cual se obtienen los parámetros óptimos y concluye el algoritmo. Por lo tanto, en este caso
particular, la implementación espećıfica del algoritmo genético consistió en definir funciones
para calcular la aptitud de los individuos, inicializar la población, seleccionar padres, realizar el
cruce y la mutación, y encontrar los parámetros óptimos mediante la optimización de la aptitud
a lo largo de múltiples generaciones. Los rangos de los parámetros y los valores espećıficos
del algoritmo genético fueron configurados previamente. Al final del proceso, se obtuvieron
los parámetros óptimos que maximizaron la probabilidad de oscilación en el parámetro O. A
continuación se puede ver un diagrama de flujo del proceso de depuración de parámetros:
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Figura 2.11: Diagrama de flujo del algoritmo genético que fue usado en la depuración de los
parámetros de nuestro modelo.
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2.3.7. Concordancia con los datos experimentales

En esta etapa del estudio, se llevó a cabo un ajuste de curva utilizando un algoritmo de mi-
nimización del error cuadrático medio en relación a la curva de datos experimentales. Este
proceso tiene como objetivo encontrar una mejor correspondencia entre la curva teórica gene-
rada por el modelo equipado de los parámetros generados y los datos experimentales obtenidos
de la literatura [10, 9].

Para realizar el ajuste de curva, se utilizaron técnicas de optimización numérica que permi-
tieron ajustar los parámetros y coeficientes del modelo para minimizar la diferencia cuadrática
entre la curva teórica y los datos experimentales [61]. Esto se realizó mediante la comparación
de los valores calculados por el modelo con los datos experimentales, ajustando los parámetros
del modelo de manera iterativa hasta alcanzar el mejor ajuste posible.

El algoritmo de minimización del error cuadrático medio buscó los valores óptimos de
los parámetros y coeficientes del modelo que minimicen la diferencia entre la curva teórica y
los datos experimentales. Esto permitiŕıa obtener una curva ajustada que se acerque lo más
posible a los datos reales, lo cual proporcionaŕıa una representación más precisa del compor-
tamiento del sistema.

Es importante destacar que el ajuste de curva se realizaró en conjunto con las simulaciones
numéricas y la optimización previamente descritas. El ajuste de curva permitiŕıa mejorar aún
más, la concordancia entre el modelo y los datos experimentales, proporcionando una valida-
ción adicional al estudio y una mejor adaptación del modelo a las oscilaciones en el consumo
de ox́ıgeno observadas en un cultivo continuo de levadura en condiciones de limitación de
nutrientes.

Ajuste de curva

El ajuste de curva a datos experimentales es un proceso fundamental en la ciencia y la in-
genieŕıa que busca encontrar una función matemática que se ajuste de manera óptima a un
conjunto de datos obtenidos mediante experimentos. Este proceso es de gran importancia
para extraer información significativa de los datos y comprender la relación entre las variables
involucradas en el fenómeno estudiado. Los aspectos matemáticos involucrados en el ajuste de
curva se basan en la minimización de la diferencia entre los valores predichos por el modelo y
los datos experimentales [61].

Una técnica comúnmente utilizada en el ajuste de curva es el método de mı́nimos cuadra-
dos. Este método se basa en minimizar la suma de los errores al cuadrado entre los valores
observados y los valores predichos por el modelo. Dado un conjunto de datos experimentales
(xi, yi)n

i=1, donde xi es la variable independiente y yi es la variable dependiente, se busca
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encontrar los parámetros y coeficientes de un modelo matemático f(x; θ) que minimicen la
siguiente función objetivo:

S(θ) =
n∑

i=1
(yi − f(xi; θ))2,

donde θ representa los parámetros y coeficientes del modelo que se ajustan a los datos. La
minimización de S(θ) se puede lograr mediante técnicas de optimización numérica que bus-
can encontrar los valores óptimos de θ que minimicen la diferencia cuadrática entre la curva
teórica y los datos experimentales.

Existen diferentes enfoques para realizar el ajuste de curva, como el ajuste lineal, el ajuste
polinomial, el ajuste de curvas no lineales, entre otros [6]. Cada enfoque tiene sus propias
caracteŕısticas y suposiciones, y la elección del método adecuado depende del problema es-
pećıfico y de las caracteŕısticas de los datos experimentales.

El ajuste de curvas no lineales puede presentar desaf́ıos adicionales en comparación con el
ajuste lineal, ya que las soluciones pueden no ser únicas y el proceso de optimización puede
requerir inicializaciones adecuadas y consideraciones adicionales. Por lo tanto, es importan-
te contar con métodos robustos y herramientas computacionales adecuadas para realizar el
ajuste de curvas no lineales de manera precisa y eficiente.

2.4. Estudios previos

Una de las técnicas de modelamiento matemático más ampliamente utilizada en los estudios
considerados es el esquema estructurado segregado. Este enfoque se emplea para analizar
sistemas complejos divididos en subcomponentes o compartimentos. Cada subcomponente
se modela por separado, teniendo en cuenta las interacciones entre ellos. Por ejemplo, en el
estudio realizado por Porro et al.[60], se investigaron las oscilaciones sostenidas observadas
en cultivos continuos de Saccharomyces cerevisiae. Estas oscilaciones se producen dentro de
un rango bien definido de tasas de dilución y valores de ox́ıgeno disuelto. El peŕıodo de las
oscilaciones está relacionado con los tiempos de generación de las células madre y las células
hijas. Se propuso un modelo que explicaba el surgimiento de estas oscilaciones, a partir de
los cambios en los parámetros del ciclo celular, debido al crecimiento alternativo de células
madres e hijas en glucosa y etanol.

Otra técnica empleada es, el modelamiento v́ıa sistemas de ecuaciones diferenciales. Caz-
zador et al. [12] propusieron un modelo matemático basado en ecuaciones diferenciales que
describ́ıan las interacciones entre las diferentes especies qúımicas y biológicas presentes en el
cultivo de levadura. A través de simulaciones numéricas y análisis teóricos, examinaron cómo
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las interacciones entre las especies y los procesos bioqúımicos podŕıan dar lugar a oscilacio-
nes en el cultivo. Se identificaron varios mecanismos potenciales, como la retroalimentación
positiva y negativa, que podŕıan desempeñar un papel en la generación de las oscilaciones
observadas. Se usa una versión modificada del modelo clásico de quimostato de Monod, para
relacionar el comportamiento de una sola célula con las oscilaciones observadas experimental-
mente. En este modelo, se consideran dos fases principales o estados de la célula, para tener en
cuenta los cambios observados experimentalmente en el crecimiento celular: la fase de brota-
ción y la fase de no brotación. En este estudio, se consideran supuestos simples adicionados al
modelo con el objetivo de obtener información práctica y manejable sobre las relaciones entre
las modificaciones metabólicas durante el ciclo celular, el control de la división y la ocurrencia
de las oscilaciones. Se toma en cuenta, el metabolismo celular asumiendo una diversificación
en el coeficiente de rendimiento durante el ciclo celular. Además, en el rango oscilatorio, se
supone que la masa celular es constante, en el momento de la formación de una nueva célula
(budding) y que depende de la concentración del sustrato limitante en el momento de la divi-
sión. Al variar los valores de los parámetros en un rango adecuado, se obtuvieron oscilaciones
sostenidas, que pueden ser comparadas con las oscilaciones experimentales observadas.

El análisis teórico basado en sistemas de ecuaciones diferenciales se encuentra presente
con el trabajo de Cazzador [11], en el que se utiliza una versión modificada del modelo clásico
de quimostato de Monod, para relacionar el comportamiento de una sola célula con las osci-
laciones observadas experimentalmente. En este modelo, se consideran dos fases principales
o estados de la célula para tener en cuenta los cambios observados experimentalmente en el
crecimiento celular: la fase de brotación y la fase de no brotación. Para ello, se asigna una
especie de estructura de dos compartimentos a la biomasa total. El modelo obtenido permite
analizar las propiedades locales de los estados estacionarios predichos bajo varias suposiciones,
tanto en los coeficientes de rendimiento como en las tasas de crecimiento espećıficas. Se deri-
van las condiciones necesarias para la inestabilidad local y se muestra la existencia de ciclos
ĺımite estables mediante simulación por computadora. En cuanto a los cambios cualitativos
en los parámetros metabólicos, este análisis concuerda con los resultados obtenidos median-
te la simulación de modelos complejos estructurados y segregados. Sin embargo, el peŕıodo
de oscilación es demasiado largo en comparación con el experimental, lo que puede deberse
principalmente a las suposiciones simplificadoras sobre la evolución dinámica de las tasas de
transferencia entre los dos compartimentos. Hasta ahora, la utilidad del modelo parece estar
restringida a la identificación de las relaciones entre la regulación del ciclo celular y el desen-
cadenante de la oscilación.

Continuando con las técnicas de modelamiento matemático en el campo de las oscilaciones
en cultivos continuos de levadura, cabe mencionar el trabajo de Bellgardt y sus colaborado-
res [7]. En este trabajo se exploró la presencia de bifurcaciones y oscilaciones en los cultivos
continuos de levadura. El objetivo principal del estudio fue comprender las condiciones bajo
las cuales los cultivos continuos de levadura pueden exhibir comportamientos bifurcativos, es
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decir, la capacidad de cambiar entre diferentes estados estables, y oscilaciones periódicas. En
su investigación se utilizó un enfoque experimental, similar al utilizado por Cazzador et al.
[12], realizando cultivos continuos de levadura y monitoreando las variables clave. Sin embar-
go, Bellgardt se centró espećıficamente en investigar la respuesta de los cultivos a cambios en
la tasa de dilución y en la disponibilidad de ox́ıgeno. A través del análisis de los datos ex-
perimentales, Bellgardt encontró evidencia de comportamientos bifurcativos y oscilaciones en
los cultivos continuos de levadura. Estos fenómenos fueron especialmente notables, cuando se
alteraron las condiciones de cultivo, como cambios en la tasa de dilución o en la concentración
de ox́ıgeno. Para comprender los mecanismos subyacentes a estas observaciones, Bellgardt
también desarrolló modelos matemáticos que describ́ıan la dinámica de los cultivos de levadu-
ra. Estos modelos consideraban factores como, la cinética de crecimiento, la producción y el
consumo de metabolitos, y las interacciones entre las diferentes especies qúımicas presentes.
A través de simulaciones numéricas y análisis teóricos, Bellgardt demostró cómo la combina-
ción de factores como la retroalimentación positiva y negativa, y los cambios en las tasas de
reacción, pod́ıan dar lugar a bifurcaciones y oscilaciones en los cultivos continuos de levadura.

En conclusión, el estudio de Bellgardt en 1997 proporcionó una comprensión más profunda
de los fenómenos bifurcativos y las oscilaciones en los cultivos continuos de levadura. Mediante
un enfoque experimental y matemático, el autor investigó las condiciones que pueden llevar a
estos comportamientos y desarrolló modelos para explicar los mecanismos subyacentes. Este
trabajo, ha contribuido significativamente al campo de la dinámica de los cultivos de levadura
y ha sentado las bases para investigaciones posteriores en esta área.

Otra técnica usada, es el enfoque cibernético, que utiliza la teoŕıa de control y sistemas de
retroalimentación para modelar y analizar sistemas complejos. El modelo cibernético es una
metodoloǵıa que permite simular la competencia dinámica entre diferentes v́ıas metabólicas
disponibles en un sistema biológico. En este caso, el modelo cibernético se utiliza para estudiar
la dinámica de crecimiento de Saccharomyces cerevisiae en cultivos por lotes y continuos. En
el estudio de Jones et al. [35], se aplicó un modelo cibernético para simular la competencia
dinámica entre diferentes v́ıas metabólicas en cultivos de levadura. En los cultivos por lotes,
se observó el patrón diauxico, donde la glucosa es fermentada completamente a etanol, du-
rante la primera fase de crecimiento exponencial, seguida de una fase de latencia intermedia y
una segunda fase de crecimiento exponencial que consume etanol. En los cultivos continuos, a
diferentes tasas de dilución, se observaron oscilaciones sostenidas en todas las concentraciones
medidas, como la masa celular, glucosa, etanol y ox́ıgeno disuelto, aśı como en la cantidad
de carbohidratos de almacenamiento intracelular, como glucógeno y trehalosa, la fracción de
células en yema y el pH del cultivo. El modelo cibernético utilizado en este estudio es es-
tructurado y no segregado, lo que significa que tiene en cuenta todas las v́ıas metabólicas
disponibles y su competencia dinámica. Este modelo logró predecir con precisión todos los
aspectos observados experimentalmente, como la duración de la fase de latencia intermedia,
la producción y consumo secuencial de etanol en los cultivos por lotes, aśı como la generación
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espontánea de oscilaciones y las variaciones en el peŕıodo y amplitud de las oscilaciones en los
cultivos continuos, cuando se modifican la tasa de dilución o la velocidad de agitación.

En el trabajo de Boczko y colaboradores [8], se emplean diferentes técnicas de modelamien-
to matemático para investigar la dinámica del ciclo celular y el agrupamiento en levaduras.
El objetivo principal es proporcionar una explicación para las oscilaciones periódicas en el
consumo de ox́ıgeno observadas en poblaciones de levadura. En el estudio, se desarrollan mo-
delos de ecuaciones diferenciales ordinarias (ODE, por sus siglas en inglés) del ciclo celular.
Estos modelos consideran tanto retroalimentaciones de crecimiento positivas, como negati-
vas dentro del ciclo celular. Se presentan pruebas rigurosas y simulaciones que demuestran
que estas retroalimentaciones pueden generar agrupamientos o çlustering”de las poblaciones
dentro del ciclo celular. Los modelos son analizados, tanto para perturbaciones aleatorias co-
mo estocásticas. Además de los modelos basados en ODE, también se emplean modelos de
ecuaciones diferenciales estocásticas (SDE, por sus siglas en inglés) y modelos de ecuaciones
diferenciales aleatorias (RDE, por sus siglas en inglés) para abordar la dinámica y el agru-
pamiento en el ciclo celular de levaduras. Los resultados obtenidos en el estudio indican que
el fenómeno de agrupamiento o clustering es robusto y es probable que se observe en la na-
turaleza. Dado que el agrupamiento implica un número entero de conjuntos, esto lleva a un
comportamiento periódico con periodos que son casi divisores enteros del periodo del ciclo
celular.

El estudio de Morgan et al. [51] trató sobre un modelo dinámico de los ciclos celulares
en un gran cultivo de células de levadura. Este modelo incorporó puertas de control del ciclo
celular y cambios en el modo metabólico que son activados por umbrales de recursos. Para
analizar el modelo, se emplearon técnicas de análisis matemático y simulaciones numéricas. En
primer lugar, se realizó un estudio anaĺıtico para demostrar la existencia de conjuntos abier-
tos de valores de parámetros, para los cuales el modelo posee soluciones periódicas estables
que exhiben oscilaciones metabólicas con agrupamiento del ciclo celular. Este análisis pro-
porcionó una base teórica para comprender las posibles causas de las oscilaciones observadas
en los experimentos. Además del estudio anaĺıtico, se realizaron simulaciones numéricas del
modelo para obtener evidencia adicional. Estas simulaciones demostraron que las soluciones
periódicas estables, que representan las oscilaciones metabólicas y el agrupamiento temporal
de las células, existen para conjuntos amplios de valores de parámetros. Estas simulaciones
brindaron una confirmación numérica de los resultados teóricos y respaldaron la idea de que
las puertas de control del ciclo celular junto con recursos cŕıticos pueden ser un mecanismo
robusto para producir los fenómenos observados experimentalmente.

Finalmente, Stowers et al. [67], emplearon diversas técnicas de modelamiento matemáti-
co para investigar la estructura de las poblaciones de levadura de brote en respuesta a un
mecanismo de retroalimentación. Los investigadores utilizaron un enfoque teórico para com-
prender cómo este mecanismo de retroalimentación, basado en la comunicación entre células,
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acopla el crecimiento y la división celular, lo que da como resultado densidades de población
no estacionarias y multimodales. Para estudiar la progresión del ciclo celular de los conjuntos
de células en respuesta a este mecanismo, se realizaron simulaciones numéricas. Estas simula-
ciones permitieron modelar y analizar cómo las oscilaciones en la estructura de la población
de la levadura en brote se reflejan en cambios observables en variables ambientales, como
el ox́ıgeno disuelto. Mediante estas simulaciones, los investigadores pudieron explorar dife-
rentes escenarios y evaluar los resultados obtenidos. Además de las simulaciones numéricas,
se presentaron datos experimentales que respaldan el modelo propuesto. Estos datos fueron
obtenidos a partir de experimentos en los que se monitorea la dinámica de las poblaciones de
levadura de brote en condiciones espećıficas. La comparación entre los datos experimentales
y los resultados de las simulaciones numéricas y el análisis teórico permitió validar el modelo
propuesto y fortalecer las conclusiones del estudio.

En conclusión, las técnicas de modelamiento matemático empleadas en las investigacio-
nes descritas incluyen el esquema estructurado segregado, el modelamiento v́ıa sistemas de
ecuaciones diferenciales, el enfoque cibernético y diversas técnicas de análisis teórico y simula-
ciones numéricas. Estas técnicas permitieron comprender mejor la dinámica de los cultivos de
levadura, y explicar fenómenos observados experimentalmente, como las oscilaciones en el cre-
cimiento celular, el consumo de nutrientes y la competencia entre diferentes v́ıas metabólicas.
Los modelos matemáticos desarrollados proporcionan una base teórica sólida para investi-
gar las interacciones y los mecanismos subyacentes en estos sistemas y permiten predecir y
analizar el comportamiento de las poblaciones celulares en diferentes condiciones. Además,
la comparación entre los resultados de las simulaciones numéricas y los datos experimentales
valida y fortalece los modelos propuestos. En general, estas técnicas de modelamiento ma-
temático son herramientas poderosas para la investigación en bioloǵıa y contribuyen a una
mejor comprensión de los sistemas biológicos complejos.

2.5. ¿Dónde estamos ahora?

De acuerdo con investigaciones previas, el estudio de las oscilaciones en el consumo de
ox́ıgeno de la levadura en cultivos continuos y bajo condiciones de limitación de nutrientes,
continúa siendo un campo con posibles lineas de investigación a desarrollar. A pesar de los
avances realizados en esta área, han surgido nuevas preguntas y aspectos por explorar [46].
Concretamente, elaborar un modelo segregado estructurado basado en nuevas investigaciones
[9, 21], podŕıa mejorar la comprensión del fenómeno de las oscilaciones en el consumo de
ox́ıgeno en cultivos continuos de levadura con limitación de nutrientes, relacionando ciclo
celular (CDC) con ciclo metabólico de la levadura (YMC).
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Caṕıtulo 3

Metodoloǵıa

3.1. ¿Cómo se realizó la búsqueda y validación de parámetros?

En general, las dinámicas asociadas a este modelo pueden variar dependiendo de los valores
espećıficos de los coeficientes y las condiciones iniciales. Las variables de estado pueden in-
teractuar y afectarse mutuamente, lo que da lugar a diferentes comportamientos dinámicos.
Algunas de las posibles dinámicas incluyen:

Estabilidad: Si los coeficientes y las condiciones iniciales están equilibrados, el sistema
puede alcanzar un estado estable en el que las concentraciones de las variables de estado
se mantienen constantes a lo largo del tiempo.

Oscilaciones: Dependiendo de los valores de los coeficientes y las condiciones iniciales,
el sistema puede exhibir oscilaciones periódicas en las concentraciones de las variables
de estado. Estas oscilaciones pueden ser regulares o irregulares, y podŕıan indicar la
presencia de un comportamiento ćıclico en el cultivo de levadura.

Transitoriedad y convergencia: En algunos casos, el sistema puede mostrar un compor-
tamiento transitorio antes de converger hacia un estado estable. Durante este peŕıodo
transitorio, las concentraciones de las variables de estado pueden cambiar significativa-
mente antes de alcanzar un equilibrio.

Sensibilidad a las perturbaciones: El sistema puede ser sensible a las perturbaciones en
los coeficientes o las condiciones iniciales. Pequeños cambios en estos valores pueden
tener un impacto significativo en las dinámicas del sistema y en las concentraciones
finales de las variables de estado.

Es importante tener en cuenta que nuestro modelo es un sistema dinámico de 4 ecua-
ciones, 2 de ellas no-lineales, y 15 parámetros. En virtud de esto, este sistema da pie a una
infinidad de dinámicas enormemente complejas y diferentes. Se pueden vislumbrar de mejor
manera las dinámicas espećıficas del sistema y realizar un análisis más detallado de estas, con
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la asignación de valores numéricos a los coeficientes y a las condiciones iniciales. Además, es
conveniente tener en cuenta que la presencia de términos no lineales en las ecuaciones puede
dar lugar a comportamientos dinámicos complejos, como bifurcaciones y caos en ciertos ran-
gos de valores de los coeficientes.

Nuestro objetivo principal en esta sección es encontrar el conjunto de parámetros y co-
eficientes del modelo que propicien oscilaciones en el consumo de ox́ıgeno en el cultivo de
levadura. Las oscilaciones en el consumo de ox́ıgeno pueden ser indicativas de fenómenos co-
mo el ciclo celular, la regulación metabólica o las interacciones entre las células y el ambiente.

Para lograr este objetivo, se requiere realizar un análisis detallado del sistema de ecuaciones
diferenciales y explorar diferentes combinaciones de parámetros y coeficientes que puedan
conducir a oscilaciones en el consumo de ox́ıgeno. Algunos enfoques comunes para lograr esto
incluyen:

Análisis teórico: Mediante técnicas matemáticas y análisis teórico, se pueden estudiar
las propiedades del sistema dinámico. Esto implica analizar las ecuaciones en su forma
no lineal y determinar condiciones suficientes para la existencia de oscilaciones estables.
Esto podŕıa implicar el uso de métodos anaĺıticos, como el análisis de estabilidad lineal,
el análisis de bifurcaciones y la teoŕıa de sistemas dinámicos.

Simulaciones numéricas: Utilizando métodos numéricos y software de simulación, se
pueden explorar diferentes combinaciones de parámetros y coeficientes del modelo para
encontrar conjuntos que produzcan oscilaciones en el consumo de ox́ıgeno. Se pueden
realizar simulaciones de las ecuaciones diferenciales en el tiempo y analizar los resultados
para identificar patrones oscilatorios.

Optimización: Se pueden emplear técnicas de optimización para encontrar el conjunto
óptimo de parámetros y coeficientes que maximicen la probabilidad de generar oscila-
ciones en el consumo de ox́ıgeno. Esto podŕıa involucrar la definición de una función
objetivo que cuantifique la presencia de oscilaciones y el uso de algoritmos de optimiza-
ción para encontrar los valores óptimos.

Es importante tener en cuenta que encontrar el conjunto exacto de parámetros y coeficien-
tes que generen oscilaciones en el consumo de ox́ıgeno puede ser un desaf́ıo, ya que implica
explorar un espacio de búsqueda amplio y complejo. Además, la selección de los parámetros y
coeficientes también debe estar respaldada por evidencia experimental y conocimiento biológi-
co.

En el presente estudio, se aborda la búsqueda del conjunto de parámetros y coeficientes
del modelo que generen oscilaciones en el consumo de ox́ıgeno en un cultivo de levadura en un
quimiostato. Dada la complejidad del sistema y la naturaleza dinámica de las interacciones
entre las variables de estado, se ha optado por realizar simulaciones numéricas y emplear

54



técnicas de optimización para abordar este objetivo. Estas metodoloǵıas permitirán explorar
un amplio espacio de búsqueda y encontrar las combinaciones óptimas que promuevan osci-
laciones en el consumo de ox́ıgeno [36, 75].

En primer lugar, se realizaron simulaciones numéricas de las ecuaciones diferenciales que
describen el sistema dinámico. Estas simulaciones se llevarán a cabo utilizando Python [72], en
particular, libreŕıas especializadas en la solución numérica de ecuaciones diferenciales, como
Numpy [55]. Se implementó el algoritmo de integración numérica, Adams-Bashforth-Moulton,
para obtener las soluciones numéricas de las ecuaciones a lo largo del tiempo. Las condiciones
iniciales y los valores iniciales de los parámetros y coeficientes se establecerán de acuerdo con
datos experimentales previos y conocimiento biológico [28, 45].

Previamente, se utilizaron herramientas de visualización y análisis para examinar las tra-
yectorias de las variables de estado del sistema en el tiempo, en la búsqueda de patrones
oscilatorios en el consumo de ox́ıgeno. Se simularon, campos de vectores, espacios de fases,
diagramas de bifurcación y mapas de Poincaré, con el objeto de seleccionar del espacio de
posibilidades numéricas, aquellos conjuntos de parámetros que propiciaran comportamientos
oscilatorios en la demanda de ox́ıgeno y/o en las restantes variables de estado del sistema (C,
D y G) [19].

Una vez identificados los patrones oscilatorios, se procedió a la etapa de optimización de
los parámetros escogidos. Se definirá una función objetivo que cuantifique la presencia y la
calidad de las oscilaciones en el consumo de ox́ıgeno. Esta función objetivo estará diseñada
para maximizar la probabilidad de encontrar conjuntos de parámetros y coeficientes que ge-
neren oscilaciones estables y robustas.

Para realizar la optimización, se pueden emplear técnicas de optimización numérica, como
algoritmos genéticos, algoritmos de enjambre de part́ıculas o métodos de gradiente descen-
dente [17, 39]. Estos algoritmos exploran el espacio de búsqueda de parámetros y coeficientes
de manera iterativa, ajustando los valores en cada iteración para mejorar la función objetivo
y converger hacia el conjunto óptimo que genere las oscilaciones deseadas en el consumo de
ox́ıgeno. En este trabajo usamos la técnica de los algoritmos genéticos.

Es importante destacar que la selección de los algoritmos de optimización y la definición
de la función objetivo se realizarán con base en la naturaleza espećıfica del sistema y las carac-
teŕısticas buscadas en las oscilaciones. Estos aspectos se fundamentarán en los conocimientos
previos en los conocimientos previos relacionados con el cultivo de levadura y los fenómenos
de consumo de ox́ıgeno [70, 60, 10, 21, 35].

En resumen, esta sección se centrará en la búsqueda del conjunto óptimo de parámetros y
coeficientes que produzcan oscilaciones en el consumo de ox́ıgeno en un cultivo de levadura.
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Esto se abordará mediante simulaciones numéricas para explorar las dinámicas del sistema
y técnicas de optimización para encontrar los conjuntos de parámetros que maximicen la
probabilidad de generar oscilaciones. Este enfoque permitirá obtener una comprensión más
profunda de las dinámicas del sistema y sus implicaciones biológicas.

A continuación se muestra un diagrama con los pasos de la búsqueda y optimización de
parámetros.

Búsqueda de parámetros óptimos

Realizar simulaciones numéricas

Analizar resultados y buscar patrones oscilatorios

Definir función objetivo y métricas de evaluación

Aplicar técnicas de optimización

Obtener resultados de los conjuntos óptimos

Ajustar parámetros con los datos experimentales
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3.1.1. Descripción de los métodos

En nuestra investigación, utilizamos un enfoque metodológico progresivo para analizar y com-
prender los patrones oscilatorios en un sistema quimiostato. Comenzamos con la selección
cuidadosa de parámetros, seguida del análisis del campo de vectores y los diagramas de fase
para comprender la dinámica general del sistema. Luego, nos enfocamos en las bifurcaciones
y los diagramas de retorno para identificar patrones oscilatorios y comprender mejor las ca-
racteŕısticas temporales del sistema. Utilizamos métodos numéricos para obtener soluciones
detalladas y validar nuestros hallazgos. Finalmente realizamos un proceso de ajuste de curva
con el único conjunto de datos disponibles [9]. Este enfoque nos permitió explorar en pro-
fundidad los patrones oscilatorios en el sistema propuesto (2.15)- (2.18) y ensayar un primer
intento de ajuste a las curva experimental.

En primer lugar describimos el comportamiento del campo de vectores asociado a las va-
riables de estado C y O. Creemos en la importancia de obtener una imagen panorámica de
la dinámica del sistema antes de embarcarnos en un enfoque más espećıfico y cuantitativo. El
campo de vectores nos proporcionó una representación visual de las direcciones y magnitudes
de los vectores de velocidad en cada punto del espacio de fase , permitiéndonos comprender las
interacciones entre las células en estado de compromiso y el ox́ıgeno disuelto. Esperamos que
este enfoque inicial nos brindara una comprensión intuitiva de cómo las variables de estado
se comportan y evolucionan en el tiempo, y nos permitió identificar patrones, tendencias y
posibles oscilaciones en el sistema [68, 2, 32]. A partir de esta panorámica general, pudimos
establecer supuestos y seleccionar rangos de parámetros y coeficientes para futuros análisis
más detallados y rigurosos. En última instancia, este enfoque nos proporcionó un contexto
idóneo para la búsqueda de los parámetros y coeficientes óptimos que mejor describieran la
dinámica de nuestro sistema, y nos permitió vislumbrar, tal vez, de manera más profunda las
relaciones causales entre las variables de estado.

Es importante volver a mencionar que la obtención de esta panorámica general de nuestro
sistema se encuentra restringida por la elección inicial de los parámetros. Conscientes de esta
premisa, se procedió a realizar una selección inicial de los parámetros mediante una heuŕıstica
que involucró una combinación de ensayo y error, aśı como consideraciones de orden biológi-
co. Esta aproximación heuŕıstica permitió establecer valores iniciales que reflejaran de manera
razonable los procesos biológicos subyacentes en el sistema en estudio. Al comprender que los
sistemas biológicos son inherentemente complejos y multifactoriales, se consideró fundamen-
tal esta elección inicial basada en una combinación de conocimiento biológico y un proceso
iterativo de ajuste. Esta elección, aunque no exenta de incertidumbre, sienta las bases para
una exploración sistemática y rigurosa de los parámetros óptimos que mejor representen la
dinámica de nuestro sistema, y permitió una comprensión más profunda de las relaciones
causales y las oscilaciones presentes en el mismo.

La utilización de diagramas de fase es una herramienta fundamental en el análisis de
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sistemas dinámicos, ya que permite profundizar en las propiedades cualitativas y el compor-
tamiento a largo plazo de dichos sistemas. En este estudio, después de haber empleado el
campo de vectores como una primera aproximación para comprender la dinámica general del
sistema respecto de las variables de interés, utilizó los diagramas de fase como una segunda
herramienta para explorar con mayor detalle las interacciones entre las variables de estado y
las trayectorias del sistema en el espacio de fase.

Los diagramas de fase ofrecen una representación visual de las trayectorias que las varia-
bles de estado siguen a medida que evolucionan en el tiempo. Cada punto en el diagrama de
fase corresponde a un estado del sistema en un momento espećıfico, y las trayectorias mues-
tran cómo esos estados cambian y se relacionan entre śı a medida que el tiempo avanza. Estos
diagramas permiten identificar regiones de estabilidad, puntos de equilibrio, ciclos ĺımite y
otros comportamientos caracteŕısticos del sistema [68, 2].

Al combinar la información obtenida del campo de vectores con los diagramas de fase, se
obtuvo una comprensión más completa y detallada de las propiedades cualitativas del sistema
en estudio. Los diagramas de fase nos permitieron visualizar las trayectorias en el espacio de
fase y analizar cómo los valores iniciales, los parámetros y los coeficientes elegidos influyen
en el comportamiento a largo plazo del sistema. Además, nos proporcionaron una herramien-
ta poderosa para identificar patrones, bifurcaciones y estructuras emergentes en el sistema
[68, 25].

Con el objetivo de identificar posibles estados del sistema que favorezcan la presencia de
oscilaciones, avanzamos en el estudio de bifurcaciones y en la construcción de un gráfico de
Poincaré para la variable del ox́ıgeno disuelto O. Este análisis nos permitió examinar cómo
cambia el comportamiento del sistema a medida que se vaŕıa un parámetro espećıfico, lo que
nos proporcionó información valiosa sobre las transiciones entre diferentes estados y la esta-
bilidad del sistema [47, 49]. En nuestro caso, el parámetro que variáramos fue la dilución d, lo
cual nos permitió identificar valores cŕıticos de d donde pudieran ocurrir cambios significativos
en la dinámica del sistema.

Por otro lado, la construcción de un gráfico de Poincaré para el ox́ıgeno disuelto nos per-
mitió investigar la variabilidad y los patrones recurrentes en la dinámica del sistema. Este
enfoque, ampliamente utilizado en el análisis de series temporales y fenómenos oscilatorios,
nos proporcionó información valiosa sobre las caracteŕısticas de las oscilaciones presentes en
el sistema[1, 59, 37]. Al estudiar la relación entre los valores actuales y desfasados del ox́ıgeno
disuelto, logramos identificar patrones ćıclicos y detectar cambios en la variabilidad del siste-
ma.

Un diagrama de bifurcaciones es una representación gráfica que nos permite observar cómo
cambian las soluciones de un sistema dinámico a medida que se vaŕıa un parámetro espećıfico
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[25]. Este tipo de diagrama es utilizado para visualizar los cambios cualitativos en el compor-
tamiento del sistema en función del valor del parámetro.
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Caṕıtulo 4

Resultados

4.1. Búsqueda de parámetros

Los valores de los parámetros y de las condiciones iniciales es determinante en la dinámica
del sistema. Para nuestro modelo dado por el sistema (2.15)-(2.18), hemos supuesto que los
siguientes valores constituyen un conjunto de candidatos apropiados para generar oscilaciones
autosostenidas en la variable de estado del ox́ıgeno disuelto O.

Parámetro Valor

d 0,1
µmax 0,18
νmax 0,65
KGD

0,1
KOD

0,1
KGC

0,005
KOC

0,005
Gin 10
YGC

0,7
YGD

0,1
YOC

0,1
YOD

0,7
k 1,2
Osat 10
a 0,05

Tabla 4.1: Parámetros iniciales.
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Es razonable pensar que, el conjunto de parámetros y las condiciones iniciales propues-
tas, podŕıan generar oscilaciones sostenidas en la variable de estado del ox́ıgeno disuelto. La
combinación de una alta tasa de transferencia de masa del ox́ıgeno, un consumo relativamen-
te bajo de este por parte de las células y una eliminación continua de estas; puede llevar a
oscilaciones periódicas en la concentración de ox́ıgeno disuelto. Los parámetros propuestos
en conjunto con las condiciones iniciales elegidas, presentan caracteŕısticas que sugieren la
presencia de oscilaciones sostenidas en la concentración de ox́ıgeno disuelto, por las razones
que detallamos a continuación.

Al considerar los valores de los parámetros y coeficientes, podemos observar que el coefi-
ciente k es mayor que 1, indicando una tasa de transferencia de masa del ox́ıgeno relativamente
alta. Además, los coeficientes YOD

y YOC
son tales que µ

YOD
es menor que 1 y ν

YOC
es mayor

que 1, lo cual implica que el consumo de ox́ıgeno por las células en estado de desarrollo es
relativamente bajo en comparación con el consumo de ox́ıgeno de las células en estado de
compromiso, lo cual es coherente con la hipótesis de que la sincrońıa de células comprome-
tidas con el CDC más el metabolismo propio de las células que inician CDC incrementan la
tasa de consumo de ox́ıgeno.

En cuanto a los demás parámetros, se observa que el coeficiente de dilución d es mayor
que 0, lo que implica una eliminación continua de las células del quimiostato. Por otro lado
los valores de µmax y νmax indican tasas de crecimiento máximas de las células en desarrollo y
en estado de compromiso, respectivamente, que difieren entre śı de tal manera que se propicie
un crecimiento mayor en la concentración de biomasa de células en el estado de compromiso.

Los coeficientes KGD
, KOD

, KGC
y KOC

están asociados con la cinética de crecimiento
celular y la afinidad por los sustratos. Estos coeficientes determinan cómo las células respon-
den a la disponibilidad de glucosa y ox́ıgeno en el medio de cultivo. Un valor alto de estos
coeficientes indica una mayor afinidad de las células por los sustratos correspondientes, de
tal manera que, al haber una mayor afinidad de las células en estado de desarrollo con los
sustratos respectivos, este grupo de células ejerce un gran impacto sobre la disponibilidad de
estos.

Cuando se combinan tasas de crecimiento máximas diferenciadas, coeficientes de cinética
de crecimiento y afinidad por sustratos adecuados, junto con una transferencia de masa de
ox́ıgeno significativa y rendimientos en consumo de ox́ıgeno disimiles acompañados de bajo
consumo, se pueden esperar oscilaciones sostenidas en la concentración de ox́ıgeno disuelto.

Estas oscilaciones ocurren como resultado de la retroalimentación positiva y negativa entre
las variables del sistema. Por ejemplo, un aumento en la concentración de células en estado de
compromiso puede conducir a un mayor consumo de ox́ıgeno, lo que reduce la concentración
de ox́ıgeno disuelto. A su vez, una disminución en la concentración de ox́ıgeno puede afectar
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la tasa de crecimiento de las células en desarrollo y, por lo tanto, influir en la concentración de
células en estado de compromiso. Estas interacciones dinámicas pueden generar oscilaciones
periódicas en la concentración de ox́ıgeno disuelto.

4.2. Análisis y búsqueda de patrones oscilatorios

4.2.1. Campo de vectores para nuestro modelo

La figura 4.1 representa el campo de vectores para C y O generado por nuestro modelo
(2.15)-(2.18), tomando como condiciones iniciales C = 1, D = 1, G = 1 y O = 1. Los
parámetros usados aparecen al pie de la figura. Para producir la figura se han usado el módulo
matplotlib.pyplot de la biblioteca matplotlib en conjunto con la libreŕıa NumPy, ambas de
Python.

Figura 4.1: Campo de vectores de C y O . Parámetros: d = 0,1; µmax = 0,18; vmax = 0,65;
KGD

= 0,1; KOD
= 0,1; KGC

= 0,005; KOC
= 0,005; Gin = 10; YGC

= 0,7; YGD
= 0,1;

YOC
= 0,1; YOD

= 0,7; k = 1,2; Osat = 10; a = 0,05.
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Si hacemos un barrido desde izquierda a derecha podemos observar que para valores bajos
de O los vectores indican un incremento sostenido de esta variable. A medida que subimos,
el panorama es distinto. Si nos situamos en el primer tercio vertical y nos movemos hacia
la derecha se puede apreciar como las flechas giran y cambian de dirección y magnitud ya a
partir de O = 1. Si subimos al segundo y tercer tercio de la imagen el cambio de dirección
y sentido de las flechas ocurre para valores más bajos de C, concretamente para valores de
C < 1. Esto parece indicar que una mayor disponibilidad de ox́ıgeno disuelto está asociado
con una tendencia al aumento en el consumo de este, que se ve fortalecido, a su vez, con el
aumento en la concentración de células en estado de compromiso. A su vez, el aumento en la
concentración de estas células, muestra un incremento en la velocidad de cáıda en la concen-
tración del ox́ıgeno disuelto, tal como se puede inferir de la magnitud, dirección y sentido de
los vectores en el cuarto superior derecho del diagrama.

La dinámica que muestra el campo de vectores sugiere una relación entre el ox́ıgeno di-
suelto y la concentración de células en estado de compromiso. Se destaca que un mayor nivel
de ox́ıgeno disuelto está asociado con un aumento en el consumo, especialmente cuando se
observa el cuarto superior derecho del diagrama. Esto recalca una interdependencia y retro-
alimentación entre estas dos variables, y sugiere que el análisis debe centrarse en los rangos
en los que esta interacción es más notoria.

4.2.2. Diagramas de fase para nuestro modelo

Reproducimos los diagramas de fase de tres variables de estado clave, células comprometidas,
células en desarrollo y ox́ıgeno disuelto, en tres escenarios: células comprometidas vs células
en desarrollo, células comprometidas vs ox́ıgeno disuelto y células en desarrollo vs ox́ıgeno
disuelto. Nuestro objetivo principal fue explorar los patrones oscilatorios presentes en el con-
sumo de ox́ıgeno y su relación con las células en sus diferentes estados a mediano y largo
plazo [53]. A través de este análisis, buscamos obtener una comprensión más profunda de las
dinámicas del sistema y de su relevancia para nuestra investigación [71, 24]. Para generar los
diagramas se utilizó la función odeint del módulo scipy.integrate de la biblioteca SciPy en
conjunto con la biblioteca NumPy, ambas de Python.

En el diagrama de fase representado por la figura (4.2), se observa una estructura en
forma de espiral con una circunferencia central hacia la cual parece converger la trayectoria.
Esta configuración es caracteŕıstica de un atractor tipo espiral, que es comúnmente encon-
trado en sistemas dinámicos no lineales. El comportamiento en espiral sugiere la presencia
de oscilaciones amortiguadas en las variables de estado representadas en el diagrama: las
células comprometidas (C) y las células en desarrollo (D). La convergencia hacia la circunfe-
rencia central indica que las oscilaciones están acotadas y tienden a un estado estacionario.
La circunferencia representa un ciclo ĺımite estable, que corresponde a una solución periódica
en el sistema. Esto significa que las células comprometidas y las células en desarrollo exhi-
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ben oscilaciones regulares y repetitivas en sus concentraciones a medida que el tiempo avanza.
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Figura 4.2: Diagrama de fase: Comprometidas v/s En Desarrollo. Se observa una estructura
espiral con una circunferencia central, indicando oscilaciones amortiguadas en las células com-
prometidas y en desarrollo. La convergencia hacia la circunferencia muestra un ciclo ĺımite
estable, revelando oscilaciones regulares y repetitivas. Esto sugiere un mecanismo de autorre-
gulación en el sistema.

En el diagrama de fase de concentración de células en estado de compromiso vs. ox́ıgeno
disuelto (Figura 4.3), se observa una trayectoria más compleja y dinámica que la anterior.
Inicialmente, la trayectoria describe una vuelta ovalada y horizontal en el costado inferior
derecho de la gráfica, indicando un estado de equilibrio estable en el cual la concentración
de células en estado de compromiso y el nivel de ox́ıgeno disuelto crecen de manera propor-
cional. A medida que la trayectoria se desplaza dando vueltas hacia el centro de la gráfica,
se producen vueltas más pequeñas con la misma forma ovalada, lo que sugiere oscilaciones
amortiguadas en las variables.
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Figura 4.3: Diagrama de fase: Comprometidas v/s Ox́ıgeno Disuelto. Este diagrama de fase
muestra una trayectoria compleja y dinámica en el espacio de las concentraciones de células
en estado de compromiso y ox́ıgeno disuelto. Se observa una evolución desde un estado de
crecimiento lineal hacia oscilaciones amortiguadas, seguido de una estabilización en torno a
un ciclo ĺımite principal. Estos patrones sugieren interacciones y retroalimentaciones entre las
variables de interés.

La convergencia de las vueltas hacia el centro de la gráfica indica una disminución gradual
en la concentración de células comprometidas. Este comportamiento puede ser atribuido a
un mecanismo de retroalimentación negativa en el que el aumento de la concentración de
células comprometidas conduce a un mayor consumo de ox́ıgeno, lo que a su vez disminuye
la disponibilidad de ox́ıgeno disuelto en el entorno celular, limitando aśı el crecimiento, a su
vez, de las células comprometidas.

Sin embargo, el cambio de dirección de la trayectoria y la formación de un óvalo alargado
inclinado en aproximadamente −45 ° revelan una estabilización de la trayectoria en torno a un
ciclo ĺımite en el que el aumento en la disponibilidad de ox́ıgeno disuelto está correlacionado
con una disminución en la concentración de células en estado de compromiso.

En el diagrama de fase de células en desarrollo v/s ox́ıgeno disuelto (Figura 4.4), se obser-
va una trayectoria en forma de espiral que se arremolina desde las regiones exteriores hacia
el centro del diagrama. Esta dinámica sugiere una relación entre las células en desarrollo y
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Figura 4.4: Diagrama de fase: En Desarrollo v/s Ox́ıgeno Disuelto. El diagrama de fase muestra
una trayectoria en forma de espiral que se arremolina hacia el centro, indicando una relación
entre las células en desarrollo y el nivel de ox́ıgeno disuelto. A medida que las células en
desarrollo aumentan, se consume más ox́ıgeno y su disponibilidad disminuye. Esto afecta el
crecimiento de las células en desarrollo y puede estar influenciado por las células en estado de
compromiso.

el nivel de ox́ıgeno disuelto en el entorno. A medida que las células en desarrollo aumentan
en concentración, se produce un mayor consumo de ox́ıgeno disuelto, lo que a su vez redu-
ce su disponibilidad en el medio. Luego, mientras disminuye el ox́ıgeno disuelto en el medio
el crecimiento de la concentración de células en desarrollo se detiene, para luego disminuir
bruscamente, permitiendo una vez que esta concentración es extremadamente pequeña, un
aumento abrupto en la concentración del ox́ıgeno disuelto. Este último fenómeno podŕıa ser
indicativo de la acción de algún mecanismo externo sobre las células en estado de desarrollo.
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4.2.3. Diagramas de bifurcación para nuestro modelo

Al analizar el diagrama de bifurcaciones, podemos identificar patrones y cambios cualitativos
en las soluciones del sistema. Por ejemplo, podemos observar la aparición de bifurcaciones,
donde una solución estable se divide en múltiples soluciones estables o inestables. También
podemos detectar transiciones en el comportamiento del sistema, como la aparición de osci-
laciones o la entrada en un estado caótico. Para producir el diagrama se utilizó la función
odeint del módulo scipy.integrate de la biblioteca SciPy en conjunto con la biblioteca NumPy,
ambas de Python.

El siguiente diagrama de bifurcaciones (Figura 4.5) nos muestra los valores estables de la
variable O a medida que se hace variar el valor de la tasa de dilución d 1. Estos valores mues-
tran una gran variabilidad en el rango que va desde 0,1 hasta 0,175 aproximadamente. Desde
0,175 hasta 0,4 los valores de O se estabilizan en O = 10. Esto sugiere dos cosas. La primera
es, que el abigarrado desorden de los valores estables de O desde d = 0 hasta d = 0,175,
sugieren la posibilidad de la existencia de oscilaciones en O. Por el contrario, desde d = 0,175
hasta d = 0,4 la existencia de oscilaciones en la variable O, es improbable.

Figura 4.5: Diagrama de Bifurcación. El desorden de los valores estables de O desde d = 0
hasta d = 0,175, sugieren la posibilidad de la existencia de oscilaciones en O. Por el contrario,
desde d = 0,175 hasta d = 0,4 la existencia de oscilaciones en la variable O, es improbable.

1El algoritmo define un rango de valores para el parámetro de dilución d usando np.linspace que genera
una secuencia de 100 valores equidistantes entre 0,1 y 0,4. Una vez que odeint resuelve el sistema de ecuaciones
para un valor de d, la matriz resultante sol contiene las soluciones numéricas para cada variable del sistema
en cada punto de tiempo. Para obtener los valores estables de la variable O, se extraen los valores finales de O
de la última fila de la matriz sol, que corresponde al tiempo final de integración.
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4.2.4. Gráfica de Poincaré aplicada a nuestro modelo

La gráfica de Poincaré es una herramienta de análisis utilizada para visualizar y estudiar la
dinámica de sistemas dinámicos periódicos o que exhiben comportamientos oscilatorios [68].
En nuestro caso, la utilizaremos para analizar la variable O y detectar posibles oscilaciones en
el sistema. Como explicamos, la idea detrás de la gráfica de Poincaré es tomar una variable de
interés, en este caso O, y muestrear su valor en momentos espećıficos en el tiempo. En lugar
de representar todos los puntos de la variable O a lo largo del tiempo, se toma una muestra
selectiva. En la gráfica de Poincaré, se representa el valor actual de la variable O en el eje X,
y se muestra el valor desfasado en una unidad temporal en el eje Y . Esto significa que para
cada punto en la gráfica, se toma el valor actual de O y se grafica el valor de O en el próximo
intervalo de tiempo.Al representar estos pares de valores (Ot, Ot+1) en la gráfica, se obtiene
una representación visual de la dinámica del sistema. Si el sistema exhibe un comportamiento
periódico u oscilatorio, los puntos en la gráfica de Poincaré se agruparán en una estructura
caracteŕıstica, como una ĺınea o una curva cerrada. Si el sistema no presenta oscilaciones, los
puntos se dispersarán de manera más desordenada. [59]. Para generar los diagramas se utilizó
la biblioteca NumPy en conjunto con el módulo matplotlib.pyplot de la libreria matplotlib,
ambas de Python.

La primera gráfica (Figura 4.6) usa una muestra de 100 iteraciones de los valores de O.
Los puntos de coordenadas (Ot, Ot+1) forman claramente una ĺınea recta. Esto sugiere la
existencia de oscilaciones.

Ahora usamos una muestra de 1000 iteraciones de valores de O (Figura 4.7). En este caso
los puntos de coordenadas (Ot, Ot+1) comienzan a dispersarse. Esto sugiere la presencia de
inestabilidad en las oscilaciones de O.
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Figura 4.6: Diagrama de Poincaré. Los puntos de coordenadas (On, On+1) se encuentran per-
fectamente alineados. Se usó una muestra de 100 iteraciones. Este hecho indica una probabi-
lidad alt́ısima de oscilaciones en la variable O.

4.2.5. Soluciones numéricas para nuestro modelo

La figura 4.8 muestra las soluciones numéricas del sistema dinámico definido por las ecua-
ciones de nuestro modelo (2.15)-(2.18), implementado en Python, utilizando la libreŕıa Scipy.
Esta libreŕıa proporciona métodos numéricos eficientes para resolver ecuaciones diferenciales
ordinarias, como el método odeint2 utilizado en este caso.

2El método odeint utilizado en Python pertenece a la libreŕıa Scipy [34]. Scipy es una libreŕıa cient́ıfica
ampliamente utilizada en Python para el procesamiento y análisis de datos cient́ıficos, incluyendo la resolución
numérica de ecuaciones diferenciales ordinarias. En particular, odeint implementa un método de integración
numérica de orden variable conocido como método de Adams-Bashforth-Moulton [27]. Este método combina
pasos hacia adelante y hacia atrás para lograr una mayor precisión y estabilidad en la solución numérica de
las ecuaciones diferenciales ordinarias. El método de Adams-Bashforth-Moulton es un enfoque popular en la
resolución numérica de ecuaciones diferenciales y se ha utilizado ampliamente en diversos campos cient́ıficos,
incluyendo la bioloǵıa, la f́ısica y la ingenieŕıa [3]. Su implementación en la libreŕıa Scipy proporciona una
herramienta confiable y eficiente para resolver sistemas dinámicos complejos y comprender mejor las dinámicas
de los sistemas biológicos.
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Figura 4.7: Diagrama de Poincaré. Con 1000 iteraciones aparece un conjunto de puntos aleja-
dos de la ĺınea central. Este hecho sugiere la presencia de inestabilidad en las oscilaciones de
O.

El sistema dinámico representa la dinámica de las variables de estado C (concentración
de células en estado de compromiso), D (concentración de células en estado de desarrollo), G
(concentración de glucosa) y O (concentración de ox́ıgeno disuelto) en un cultivo de levadura
en un quimiostato. Las ecuaciones diferenciales del sistema se definen en la función ode-model,
que utiliza los parámetros y coeficientes proporcionados. El método odeint resuelve numéri-
camente las ecuaciones diferenciales a lo largo de un intervalo de tiempo especificado. En este
caso, se utiliza un vector de tiempo t con una longitud de Nt y un intervalo de tiempo máximo
de tmax. La condición inicial del sistema se establece en el vector X0.

La gráfica (Figura 4.8) muestra las concentraciones de las variables de estado en función
del tiempo. En particular, se resalta la concentración de ox́ıgeno disuelto (O), que es la va-
riable de mayor interés. Se observan oscilaciones periódicas en la concentración de ox́ıgeno
disuelto, a lo largo del tiempo. Estos resultados respaldan la hipótesis planteada por Burnetti
et al. [10, 9], donde se propone que las oscilaciones en el ox́ıgeno disuelto están relacionadas
con un reclutamiento repentino de células en estado de compromiso por parte de células en
la etapa final de su fase de desarrollo, a través de señales. Según Burnetti et al. [10, 9] esta
explosión repentina en el número de células en estado de compromiso conduce a un aumento
acelerado en el consumo de ox́ıgeno.
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Figura 4.8: Soluciones numéricas. La gráfica muestra las oscilaciones de la concentración de
células en estado de compromiso (rojo), células en estado de desarrollo (azul) y la concen-
tración de ox́ıgeno disuelto (verde) en el cultivo de levadura en un quimiostato. Los valores
iniciales y los parámetros del sistema se han configurado de acuerdo con el modelo propuesto.
Las oscilaciones en la concentración de ox́ıgeno disuelto son evidencia de un reclutamiento
repentino de células en estado de compromiso, lo que resulta en un aumento acelerado del
consumo de ox́ıgeno.

La implementación numérica y los resultados obtenidos mediante el uso de la libreŕıa Scipy
respaldan la hipótesis propuesta, ya que las oscilaciones en la concentración de ox́ıgeno di-
suelto son claramente evidentes a partir de la gráfica obtenida (Figura 4.8). Esto sugiere que
el sistema dinámico modelado con los parámetros y coeficientes dados es capaz de generar las
oscilaciones esperadas en el ox́ıgeno disuelto, lo que es consistente con la hipótesis y con el
trabajo previo de Burnetti et al. [10, 9].
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Para obtener las gráficas de las figuras (4.9)-(4.12) se usaron las libreŕıas NumPy, Pandas,
Matplotlib y ipwidgets, todos de Python.

Las gráficas de la figura 4.9 muestran la variación de la tasa de obediencia a en las con-
centraciones de las células en estado de “Compromiso”y “Desarrollo” a lo largo del tiempo en
el cultivo.

Figura 4.9: Variación del parámetro a. Las gráficas muestran cómo la variación de la tasa de
obediencia a afecta las concentraciones de las células en estado de compromiso y desarrollo
en un cultivo de levadura. Se observa que un aumento en a promueve el crecimiento de
ambas poblaciones celulares a lo largo del tiempo. Estos resultados respaldan la hipótesis de
reclutamiento de células en estado de compromiso por parte de las células en desarrollo.

En la gráfica superior (Figura 4.9), que representa la concentración de células en estado
de compromiso en función del tiempo, se puede ver que a medida que el valor de a aumenta,
la concentración de células en estado de compromiso también aumenta. Esto sugiere que una
mayor tasa de obediencia a promueve un mayor crecimiento de las células en estado de com-
promiso. Por otro lado, en la gráfica inferior (Figura 4.9), que muestra la concentración de
células en estado de desarrollo en función del tiempo, se puede apreciar una tendencia similar.
A medida que el valor de a aumenta, la concentración de células en estado de desarrollo tam-
bién aumenta. Esto indica que un aumento en la tasa de obediencia favorece el crecimiento
de las células en estado de desarrollo.

Estos resultados son consistentes con la hipótesis planteada en el contexto del modelo y
respaldada por trabajos previos, donde se sugiere que la tasa de obediencia a está relacionada
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con la capacidad de reclutamiento de células en estado de desarrollo, por parte de las células
en estado de compromiso. Un aumento en a permite una mayor comunicación y reclutamiento
de células en estado de desarrollo, lo que resulta en un incremento en las concentraciones de
ambas poblaciones celulares.

Al analizar las gráficas de la figura 4.10, se puede observar que el cambio en el parámetro a
afecta principalmente a la amplitud de las oscilaciones en la concentración de ox́ıgeno disuelto
y glucosa. A medida que el valor de a aumenta, las oscilaciones en ambas concentraciones
también aumentan en amplitud. Esto implica que un incremento en a conduce a oscilaciones
más pronunciadas y marcadas tanto, en la concentración de ox́ıgeno disuelto, como en la
concentración de glucosa a lo largo del tiempo.

Figura 4.10: Variación del parámetro a. A medida que el valor de la tasa de obediencia a
aumenta, se observa un incremento en la amplitud y pronunciación de las oscilaciones en las
concentraciones de glucosa y ox́ıgeno disuelto. Esta respuesta se debe a la intensificación de
la competencia y el consumo de sustratos por parte de las células en estado de compromiso,
influenciado por el parámetro a. En consecuencia, se generan oscilaciones más marcadas en
las concentraciones de glucosa y ox́ıgeno disuelto en el quimiostato.

Este comportamiento puede ser explicado por el efecto de la tasa de obediencia, repre-
sentada por el parámetro a, en la interacción entre las células en estado de compromiso y en
estado de desarrollo. A medida que a aumenta, la tasa de reclutamiento de células en estado
de desarrollo, por parte de las células en estado de compromiso, se intensifica. Esto resulta en
una mayor competencia y consumo de ox́ıgeno y glucosa por parte de las células en estado de
compromiso, lo que a su vez genera oscilaciones más pronunciadas en las concentraciones de
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ambos sustratos en el cultivo de levadura.
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Las gráficas de la figura 4.11 muestran el efecto de la variación de la tasa de dilución d en
las oscilaciones de las concentraciones de las células en estado de compromiso y desarrollo. Se
observa que a medida que el valor de d aumenta, las amplitudes de las oscilaciones en ambas
concentraciones disminuyen. Esto se debe a que una tasa de dilución más alta implica una
eliminación más rápida de las células del sistema, lo que limita su acumulación y reduce las
fluctuaciones en las concentraciones alcanzadas. Por otro lado, una tasa de dilución más baja
permite que las células se acumulen y, por lo tanto, se observan amplitudes de oscilación más
grandes.

Figura 4.11: Variación del parámetro d. La variación de la tasa de dilución d afecta las ampli-
tudes de las oscilaciones. Un mayor valor de d reduce las amplitudes, mientras que un valor
más bajo las aumenta. Esto demuestra la influencia de la tasa de dilución en la dinámica del
sistema.
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Las gráficas de la figura 4.12 muestran el efecto de la variación de la tasa de dilución
d en las oscilaciones de las concentraciones de glucosa y ox́ıgeno disuelto. Se observa que a
medida que el valor de d aumenta, las amplitudes de las oscilaciones en ambas concentracio-
nes permanecen, prácticamente inalteradas. En cambio a una mayor tasa de dilución d, se
puede observar un desfase en ambas familias de oscilaciones. Respecto de las oscilaciones del
ox́ıgeno disuelto es particularmente notable el aumento en el peŕıodo de disponibilidad, de una
concentración de ox́ıgeno disuelto máxima, en la medida en que la tasa de dilución d aumenta.

Figura 4.12: Variación del parámetro d. La variación de la tasa de dilución d prácticamente
no afecta la amplitud de las oscilaciones de las concentraciones de ox́ıgeno disuelto y glucosa.
Si afecta los peŕıodos de ambas oscilaciones, siendo más pronunciado este efecto en las oscila-
ciones de O. Un mayor valor de d incrementa el periódo de disponibilidad del ox́ıgeno disuelto
en una concentración máxima, para las células.
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4.3. Optimización de parámetros

4.3.1. Algoritmos Genéticos para nuestro modelo

A continuación se presenta la tabla que muestra el conjunto de parámetros obtenidos aplicando
la técnica de algoritmos genéticos:

Parámetro Valor

d 0.1807
µmax 0.2054
νmax 0.6526
KGD

0.0726
KOD

0.1790
KGC

0.0006
KOC

0.0079
Gin 8.2470
YGC

0.6846
YGD

0.1425
YOC

0.1300
YOD

0.8129
k 1.4155

Osat 7.008
a 0.0425

Tabla 4.2: Parámetros depurados después de un proceso evolutivo de 100 generaciones a partir
de una población de 100 individuos.

Para producir las figuras (4.13) y (4.14) se usó el módulo matplotlib.pyplot de la libreŕıa
matplotlib en conjunto con las librerias NumPy y la función odeint del módulo scipy.integrate
de la biblioteca SciPy.
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Figura 4.13: Evolución de la aptitud promedio. La gráfica muestra la evolución de la aptitud
promedio de los individuos según el número de generaciones.

Figura 4.14: Soluciones numéricas con parámetros depurados. La gráfica muestra las soluciones
de nuestro modelo de ecuaciones diferenciales usando los parámetros obtenidos con la técnica
de optimización de algoritmos genéticos.
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4.4. Ajuste de parámetros

Se utilizaron diferentes implementaciones del método de minimización de cuadrados previa-
mente descrito. Para llevar a cabo esta tarea, se utilizaron diversas libreŕıas de Python [72],
como Numpy [55] y Scipy [73]. También se ensayó una implementación con Lmfit [54]. Este
conjunto de datos experimentales se obtuvo del estudio de Anthony Burnetti, Coupling of
the Yeast Metabolic Cycle and the Cell Division Cycle in Populations and Single Cells del
año 2017, trabajo de tesis en el cual se conceptualiza y cuantifica por vez primera el estado
de “Compromiso Celular” (Cell Commitment) [9]. En la primera columna se encuentran los
valores de tiempo, mientras que en la segunda y tercera columna se registra la fracción de
células comprometidas C y la concentración de ox́ıgeno disuelto O.
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Tiempo Fracción Comprometida Ox́ıgeno Disuelto
15 0.720 6.7905
30 0.648 6.7703
45 0.548 6.7501
60 0.484 6.7602
75 0.388 6.7602
90 0.316 6.7891
105 0.248 6.7804
120 0.172 6.7508
135 0.308 6.6042
150 0.572 6.3860
165 0.888 6.6186
180 0.832 6.8079
195 0.724 6.8158
210 0.680 6.8079
225 0.628 6.7790
240 0.656 6.7652
255 0.504 6.7587
270 0.452 6.7385
285 0.392 6.7226
300 0.324 6.7385
315 0.256 6.7790
330 0.192 6.7790
345 0.220 6.7587
360 0.212 6.6656
375 0.532 6.3022
390 0.752 6.5146
405 0.644 6.8050
420 0.508 6.8079
435 0.472 6.7992
450 0.408 6.7631

Tabla 4.3: Valores experimentales de la fracción de células en estado de compromiso y con-
centración de ox́ıgeno disuelto. Datos extráıdos de Burnetti, 2017 [9].
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La Figura 4.15 muestra la curva de ox́ıgeno disuelto versus la fracción de células compro-
metidas.

Figura 4.15: Fracción de Células en estado de Compromiso y Ox́ıgeno Disuelto. La figura
extráıda de Burnetti, 2017 [9] muestra la curva de oxigeno disuelto (pO2) (curva de color
negro) en conjunto con la curva de la fracción de células en estado de compromiso (Fraction
Committed) ( curva de color verde). Los ćırculos rellenos y vaćıos corresponden a los puntos
en donde este grupo de células ingresa al HOC y egresa del HOC respectivamente.
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A continuación se muestra una tabla con los parámetros resultante del ajuste de curva.

Parámetro Valor

d 0.27016
µmax 0.28644
νmax 0.73060
KGD

0.10776
KOD

0.18152
KGC

0.00007
KOC

0.00903
Gin 7.90520
YGC

0.24420
YGD

0.07398
YOC

0.14233
YOD

0.72640
k 2.12896

Osat 6.72159
a 0.05059

Tabla 4.4: Parámetros ajustados a los datos experimentales obtenidos de Burnetti, 2017 [9]
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La figura 4.16 muestra una gráfica comparativa de los puntos experimentales y las curvas
generadas por la implementación del modelo de los parámetros ajustados. Para generar esta
figura se usó el módulo matplotlib.pyplot de la libreŕıa matplotlib en conjunto con las librerias
Numpy y la función solve ivp del módulo scipy.integrate de la biblioteca SciPy.

Figura 4.16: Parámetros Ajustados. La figura muestra el resultado del ajuste de curva. Los
puntos de color rojo representan los valores experimentales de la fracción de células compro-
metidas. Los puntos de color azul representan los niveles experimentales de ox́ıgeno disuelto.
La ĺınea de color púrpura representa la curva ajustada de la fracción de células comprometidas
y la curva de color gris representa la curva ajustada del nivel de ox́ıgeno disuelto.
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4.5. Discusión de los resultados

En nuestro trabajo, hemos logrado combinar conocimiento biológico, como la hipótesis de
Futcher [21] y el esquema simplificado de Burnetti [10, 9] (Células Comprometidas-Células
Refractarias), en un modelo de ecuaciones diferenciales. Este modelo es capaz de reproducir
las oscilaciones en el consumo de ox́ıgeno y la dinámica poblacional de las células comprome-
tidas en el ciclo de división celular (CDC).

Aunque el ajuste de cuerva realizado con parámetros optimizados respecto a un conjunto
limitado de datos experimentales no ha sido completamente satisfactorio, creemos que esto se
puede solucionar implementando nuevos ajustes de parámetros y considerando conjuntos más
variados y ricos de datos.

Nuestro enfoque combina conocimiento biológico y modelización matemática para com-
prender las dinámicas complejas de los sistemas biológicos. Al incorporar la hipótesis de
Futcher [21] y el esquema de Burnetti [10] en nuestro modelo, hemos logrado capturar las
oscilaciones en el consumo de ox́ıgeno y modelar la dinámica de las células comprometidas,
hecho inédito en los estudios matemáticos de sistemas biológicos.

Es más, con la incorporación de esta idea hemos rescatado un aspecto que no hab́ıa sido
considerado como elemento crucial en investigaciones relacionadas con el comportamiento os-
cilatorio de los elementos presentes en un cultivo de levadura en condiciones de continuidad
y limitación de nutrientes, pero cuya importancia investigadores como Burnetti [9] y Laxman
[46] ya hab́ıan vislumbrado. Nos referimos a la existencia del estado celular de compromiso y
la consecuente segregación poblacional relacionada con dicho estado.

Para mejorar nuestro modelo y obtener resultados más satisfactorios, proponemos combi-
nar diferentes tipos de ajustes con conjuntos más diversos y extensos de datos experimentales.
Esto nos permitirá afinar los parámetros y obtener una mejor correspondencia entre el modelo
y los datos observados. Recientemente hemos obtenido los datos experimentales del trabajo
de Tu et al. [70]. Este rico y variado conjunto de datos podŕıa utilizarse para realizar un nuevo
ajuste de curva, al menos, con respecto de los niveles de ox́ıgeno disuelto.
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Caṕıtulo 5

Conclusión

5.1. Conclusiones

El modelo matemático produce oscilaciones en la concentraciones del ox́ıgeno
disuelto

Nuestro estudio demuestra que el modelo matemático (2.15)-(2.18) es capaz de producir osci-
laciones en las variables de estado del sistema. Espećıficamente, hemos observado oscilaciones
significativas en la concentración de ox́ıgeno disuelto y las concentraciones relativas de las
poblaciones de células en los estados de compromiso y desarrollo. Estas oscilaciones son el re-
sultado de las complejas interacciones entre los elementos del modelo para cierta configuración
de sus parámetros.

Las oscilaciones en el ox́ıgeno disuelto se producen para valores de la tasa de
dilución entre d = 0,1 y d = 0,18

Las oscilaciones en la concentración de ox́ıgeno disuelto son susceptibles de producirse dentro
de un rango espećıfico de valores de la tasa de dilución del sistema, en concreto, entre d = 0,1
y d = 0,18. Este hecho coincide con el reporte de Porro et al.[60]. Durante este intervalo de
tasa de dilución, hemos observado la presencia de oscilaciones periódicas en la concentración
de ox́ıgeno disuelto, lo que indica la existencia de un comportamiento dinámico complejo
en el sistema. Estas oscilaciones son el resultado de las interacciones entre las variables del
sistema, como la concentración de biomasa, de sustrato limitante y la concentración de ox́ıgeno
disuelto, para cierta configuración de sus parámetros. A medida que la tasa de dilución vaŕıa
dentro del rango mencionado, se producen cambios en las condiciones de flujo de nutrientes
y metabolitos en el sistema. Estos cambios, a su vez, afectan la dinámica del ox́ıgeno disuelto
y dan lugar a oscilaciones periódicas en su concentración.
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El modelo propuesto da cuenta de una dinámica simplificada del proceso de sin-
cronización de células, aún sin ser ajustado satisfactoriamente al único conjunto
de datos disponible

El modelo propuesto captura de manera adecuada una dinámica simplificada del proceso de
sincronización de células. Sin embargo, a pesar de su capacidad para describir ciertos aspec-
tos del fenómeno estudiado, no ha logrado ajustarse satisfactoriamente al único conjunto de
datos disponible para su validación. Si bien el modelo propuesto no se ha desarrollado con el
objetivo de simular y comprender el proceso de sincronización de células para una única cepa
de levaduras, se esperaŕıa que una vez ajustados los parámetros con los datos experimentales,
no desaparecieran las oscilaciones sostenidas en la disponibilidad de ox́ıgeno disuelto. Para
lograr este cometido se ha tenido en cuenta una serie de variables y parámetros que influyen
en la dinámica de sincronización, y se ha formulado un sistema de ecuaciones que representa
estas interacciones.

A pesar de su fundamentación teórica y la consideración de factores relevantes, al com-
parar los resultados generados por el modelo con el único conjunto de datos experimentales
recopilados, se ha observado cierta discrepancia, cuando se intentó encontrar un conjunto de
parámetros fieles al único conjunto de datos disponibles. Las simulaciones no lograron repro-
ducir de manera completamente fiel el comportamiento observado en la experimentación por
Burnetti [9], lo que al menos deja un interrogante abierta respecto a la idoneidad del proceso
de ajuste de parámetros.

Esta conclusión resalta la necesidad de realizar mejoras, en primer lugar, en la cantidad y
variedad de datos experimentales; en segundo lugar en la confección del protocolo de ajuste
de parámetros, aśı como también, pero en menor medida, la realización de modificaciones en
el modelo. Otra posibilidad es explorar enfoques alternativos de modelamiento matemático,
con el propósito de modelar desde otra perspectiva, la dinámica de sincronización celular.
También se hace relevante el considerar las caracteŕısticas y riqueza de los datos disponibles,
al momento de configurar un nuevo modelo.

5.2. Perspectivas

Ajustar el modelo a distintas cepas de levadura y al conjunto de datos obtenido
recientemente del estudio de B. Tu [70]

Encontrar nuevos conjuntos de datos experimentales de distintas cepas de levadura para ajus-
tar los parámetros del modelo a cada uno de ellos. De acuerdo con el estudio de Burnetti [10]
existe acoplamiento YMC-CDC a lo largo de diferentes cepas. Se sugiere conseguir la data de
la evolución en el tiempo de la concentración de ox́ıgeno disuelto de cada cepa y realizar un
ajuste de parámetros para cada una de ellas.
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También seŕıa pertinente ajustar en detalle el modelo al conjunto de datos del estudio de
B. Tu [70], el cual fue recientemente conseguido.

Desarrollar la hipótesis de la existencia de una subpoblación de células en estado
desarrollo

Se sugiere desarrollar la hipótesis de la existencia de una subpoblación de células en estado de
desarrollo que sea coherente con el modelo de Futcher-Burnetti [21, 9]. Esta hipótesis se basa
en observaciones y análisis previos que sugieren la presencia de células en un estado particular
funcionalidad durante el proceso de sincronización. Para abordar esta perspectiva, se propone
diseñar experimentos espećıficos que permitan identificar y caracterizar las células en estado
de desarrollo dentro de la población total. Estos experimentos podŕıan involucrar técnicas de
marcado y seguimiento celular, aśı como análisis de expresión génica o perfiles metabólicos,
similares a los usados por Burnetti y Laxman et al.[9, 46].

Relacionar fase G0 (Estado de reposo de células no gemadas) con células refrac-
tarias

Seŕıa pertinente responder a preguntas como ¿qué fracción de las células en estado refracta-
rio se encuentran es estado de reposo? ¿Qué fracción de las células en estado refractario se
encuentran en estado de desarrollo? ¿Cuál es la relación de las células en estado G0 con las
células en estado de desarrollo?

Relacionar el estado de desarrollo celular con YMC

Existe evidencia de que el YMC actúa como controlador de las células que entran al estado de
compromiso, ya que estas parecen ingresar al HOC justo antes de comenzar CDC [9]. ¿Cuál
es la relación espećıfica entre las fases del YMC y la dinámica de las células en estado de
desarrollo?

Explorar una dinámica que integre los estados de susceptibilidad y refractariedad

Considerar tres estados celulares: Refractarias, susceptibles y comprometidas para elaborar
un modelo matemático que incorpore el conocimiento disponible acerca del rol que juegan los
grupos de células que no acuden al llamado para iniciar CDC, en la producción de oscilaciones
metabólicas.
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Caṕıtulo 6

Anexos

6.1. Códigos usados

Los códigos empleados para realizar las figuras y los análisis se encuentan en:
https://github.com/gferradac/Tesis-2.0.git
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[13] N. Chen, M. Hu, and R. Hofestädt. A systematic petri net approach for multiple-scale
modeling and simulation of biochemical processes. Applied biochemistry and biotechno-
logy, 164:338–52, 2011.

[14] J.P. Corriou. Numerical Methods and Optimization: Theory and Practice for Engineers.
Springer Optimization and Its Applications. Springer International Publishing, 2022.

[15] Philip S. Crooke and Robert D. Tanner. Hopf bifurcations for a variable yield continuous
fermentation model. International Journal of Engineering Science, 20(3):439–443, 1982.

[16] Ph. Duboc, I. Marison, and U. Von Stockar. Physiology of saccharomyces cerevisiae
during cell cycle oscillations. Journal of Biotechnology, 51:57–72, 1996.

[17] A. E. Eiben and J. E. Smith. Introduction to evolutionary computing. Natural Computing
Series, 2003.

[18] G. Bard Ermentrout and Leah Edelstein-Keshet. Cellular automata approaches to bio-
logical modeling. Journal of Theoretical Biology, 160(1):97–133, 1993.

[19] Igor N. Ferreira and Jennifer V. Ross. Analyzing oscillatory patterns in biological systems:
A tutorial on fourier transform techniques. Journal of Biological Dynamics, 14(1):269–
291, 2020.

[20] R.K. Finn and Wilson R.E. Fermentation process control, population dynamics of a
continuous propagator for microorganisms. J. Agric. Food Chem., 2,2, 66-69.

[21] Bruce Futcher. Metabolic cycle, cell cycle, and the finishing kick to start. Genome
Biology, 7:107.1–107.5, 2006.

[22] Alan Garfinkel, Jane Shevtsov, and Gina Guo. Modeling Life: The Mathematics of Bio-
logical Systems. Springer, 2017.

[23] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

[24] Albert Goldbeter and Daniel E. Koshland. An amplified sensitivity arising from covalent
modification in biological systems. Proceedings of the National Academy of Sciences,
78(11):6840–6844, 1981.

[25] John Guckenheimer and Philip Holmes. Nonlinear oscillations, dynamical systems, and
bifurcations of vector fields. Springer, 1983.

94



[26] K.P. Hadeler and J. Müller. Cellular Automata: Analysis and Applications. Springer
Monographs in Mathematics. Springer International Publishing, 2017.

[27] E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I:
Nonstiff Problems. Springer-Verlag, 1993.

[28] Ernst Hairer and Gerhard Wanner. Solving ordinary differential equations ii: Stiff and
differential-algebraic problems. Springer Series in Computational Mathematics, 14, 1993.
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[49] Robert M. May. Simple mathematical models with very complicated dynamics. Nature,
261(5560):459–467, 1976.

[50] Jacques Monod. The growth of bacterial cultures. Annual Review of Microbiology, 3:371–
94, 1949.

[51] Luke Morgan, Gregory Moses, and Todd Young. Coupling of the cell cycle and metabo-
lism in yeast cell-cycle-related oscillations via resource criticality and checkpoint gating.
Letters in Biomathematics, 5:113–128, 2018.

[52] D.B. Murray, R.R. Klevecz, and D. Lloyd. Generation and maintenance of synchrony in
saccharomyces cerevisiae continuous culture. Exp Cell Res, 287:10–5, 2003.

[53] J. D. Murray. Mathematical Biology I. An Introduction. 2002.

96



[54] Matthew Newville, Till Stensitzki, Daniel B. Allen, Antonino Ingargiola, and Esen E.
Alp. Lmfit: Non-linear least-squares minimization and curve fitting for python. Journal
of Open Source Software, 7(7):1237, 2022.

[55] Travis E. Oliphant. Numpy: A guide to numpy. Trelgol Publishing, 1(1):1–105, 2006.

[56] Lawrence Osborne. The Accidental Connoisseur: An Irreverent Journey Through the
Wine World. North Point Press, 2004.

[57] A. Panek. Function of trehalose in baker’s yeast (saccharomyces cerevisiae). Arech
Biochem Biophys, 100:422–5, 1963.

[58] Pratap R Patnaik. Oscillatory metabolism of saccharomyces cerevisiae: an overview of
mechanisms and models. Biotechnol Adv, 3:183–92, 2003.

[59] Arkady Pikovsky, Michael Rosenblum, and Jurgen Kurths. Synchronization: A Universal
Concept in Nonlinear Sciences. Cambridge University Press, 2003.

[60] Danilo Porro, Enzo Martegani, Bianca Maria Ranzi, and Lilia Alberghina. Oscillations
in continuous cultures of budding yeast: A segregated parameter analysis. Biotechnol.
Bioeng., 32:411–417, 1988.

[61] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University
Press, 2007.

[62] W. Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case
Studies. Springer Berlin Heidelberg, 2016.

[63] J. B. Robertson, C. C. Stowers, E. Boczko, and C. H. Johnson. Real-time luminescence
monitoring of cell-cycle and respiratory oscillations in yeast. Proc Natl Acad Sci USA,
105:17988–93, 2008.

[64] Roger Scruton. Bebo, luego existo. Rialp, 2017.
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