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Resumen

Dependiendo de factores como: la tasa de dilucién, el nivel de oxigeno y pH; un
cultivo continuo de levadura con glucosa limitante, presenta oscilaciones autosos-
tenidas en la concentracién de oxigeno disuelto [38), 20]. Segun Futcher [2I] esto
ocurre porque las células que se encuentran en las postrimerias de la etapa G1
liquidan sus provisiones de carbohidratos, produciendo a raiz de esto, un estalli-
do de glucosa. Una parte de la glucosa generada, es quemada por las células via
respiracion oxidativa, fermentando el resto en etanol, el cual se libera al medio.
Este fendmeno incrementa en gran medida la tasa de respiracion. El etanol libera-
do entra en contacto con las células que se encuentran en rezagadas, propiciando
que alcancen a las células que van a la vanguardia. Debido a este mecanismo, un
conjunto grande de células, se compromete orquestadamente con iniciar el ciclo de
divisién celular.

La secuencia de eventos descrita, se encuentra conectada al ciclo metabdlico de
la levadura, ya que las fases oxidativas (Ox) y de reduccion - construccion (R/B)
parecen producirse en una ventana temporal que comienza en la etapa G1 tardia
y termina justo antes del inicio de la larga fase de crecimiento G1 [70]. En es-
te periodo se detecta un alto consumo de oxigeno. Por otro lado el desarrollo
de las células de levadura parece acontecer en paralelo a la fase de reduccion -
carga (R/C), etapa en la cual estas células usan la glucosa de tres maneras distin-
tas; como fuente de energia, como material para construir su pared celular, como
provisiones en forma de glucégeno y trehalosa que le serviran, a la postre, como
materiales para el proximo ciclo de division celular [21]. En esta ventana temporal
se produce un bajo consumo de oxigeno.

En este trabajo asumimos la hipétesis de Futcher [21] en cooperacién con el modelo
simplificado propuesto por Burnetti et al. [10, 9] con el fin de modelar matemati-
camente el mecanismo de oscilacion en el consumo de oxigeno de las células de
levadura en un cultivo continuo en condiciones de limitacién de nutrientes. Para
llevar a cabo tal tarea, elaboramos un sistema de ecuaciones diferenciales ordi-
narias, las cuales representan las interdependencias y el cambio en el tiempo de
las concentraciones de biomasa y sustratos limitantes. A partir de este modelo
matematico, obtenemos sugerencias acerca de los valores idéneos de los parame-
tros del sistema que propicien oscilaciones en la concentracién de oxigeno disuelto.
Finalmente, este modelo es forzado a adecuarse a un caso particular ajustando,
en la medida de lo posible, sus parametros para que reproduzca un resultado
experimental obtenido por Burnetti [9].



Abstract

Depending on factors such as dilution rate, oxygen level, and pH, a continuous
yeast culture with limiting glucose exhibits self-sustained oscillations in dissolved
oxygen concentration [38|, 20]. According to Futcher [21], this occurs because cells
at the end of the G1 stage deplete their carbohydrate reserves, leading to a burst
of glucose. Some of the generated glucose is oxidatively respired by cells, while the
rest is fermented into ethanol, which is released into the medium. This phenomenon
significantly increases the respiration rate. The released ethanol comes into contact
with lagging cells, enabling them to catch up with the leading cells. Due to this
mechanism, a large set of cells collectively commits to initiating the cell division
cycle.

The described sequence of events is linked to the yeast metabolic cycle, as the
oxidative (Ox) and reduction-construction (R/B) phases appear to occur in a
temporal window beginning in late G1 and ending just before the onset of the long
G1 growth phase [70]. High oxygen consumption is detected during this period.
On the other hand, yeast cell development seems to occur in parallel with the
reduction-charging (R/C) phase, during which cells use glucose in three different
ways: as an energy source, as material to build their cell wall, and as reserves in
the form of glycogen and trehalose, which will ultimately serve as materials for the
next cell division cycle [2I]. Low oxygen consumption occurs during this temporal
window.

In this work, we adopt Futcher’s hypothesis [21] in conjunction with the simplified
model proposed by Burnetti et al. [10, [9] to mathematically model the oscillation
mechanism in yeast cell oxygen consumption in a continuous culture under nutrient
limitation conditions. To accomplish this task, we formulate a system of ordinary
differential equations representing the interdependencies and time changes in bio-
mass and limiting substrates concentrations. From this mathematical model, we
obtain insights into the ideal parameter values that facilitate oscillations in dissol-
ved oxygen concentration. Finally, we force this model to fit a particular case by
adjusting its parameters as much as possible to replicate an experimental result
obtained by Burnetti [9].



Capitulo 1

Introduccion

1.1. Antecedentes

1.1.1. El cultivo continuo de la levadura

El cultivo de microorganismos, y en particular la produccién de levaduras, es una practica
experimental que se encuentra en un estado de desarrollo avanzado. Esta tarea ha sido, desde
hace largo tiempo, perfeccionada en virtud de sus beneficios. De hecho, las levaduras consti-
tuyen un grupo de microorganismos muy intimamente asociado al progreso y bienestar de la
humanidad [5]. Algunas especies de levaduras del género Saccharomyces son capaces de llevar
a cabo el proceso de fermentacion, facultad que se ha usado desde hace muchisimos anos en la
produccién de pan y de bebidas alcohdlicas. El consumo de levaduras ha ayudado a inspirar
un sinnimero de obras de arte que ensalzan al Dios del vino y a aquellos que disfrutan de su
consumo [64], 56]. El perfeccionamiento y el natural desarrollo de las técnicas de produccién de
los productos asociados con las levaduras pudo haber propiciado progresivamente el estudio
detallado de S. Cerevisiae. A raiz de su simpleza, este microorganismo se convirtié en un
modelo de estudio para la célula eucarionte, contribuyendo de manera muy importante a la
biologia celular.

Con el fin de recrear las condiciones adecuadas para la producciéon de cierto producto
derivado, por ejemplo, de la fermentacién, los microorganismos como la levadura se encierran
junto a sus nutrientes al interior de una vasija. Este artefacto, conocido como bioreactor,
consiste cominmente en un recipiente hermético, donde pueden controlarse algunas variables
ambientales relevantes, para la transformacién del material biolégico, como la temperatura,
pH, alimentacion, suministro de oxigeno, etc. Es muy importante para la dindmica del cultivo,
si el bioreactor posee entrada y/o salida de medio fresco. Cuando el sistema posee una entrada
y una salida para el suministro de nutrientes, el bioreactor recibe el nombre de Quimioestato.
Cuando el sistema no posee entrada ni salida, el cultivo se denomina cultivo por lote y da pie
a un cultivo en modo discontinuo.
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Figura 1.1: Crecimiento de quimiostatos. En una cdmara de quimiostato (A), se agita y airea
un cultivo de levadura mientras se alimenta con medio fresco a una velocidad de dilucién
constante (D, volumen/h). Los medios agotados y las células se eliminan a la misma velo-
cidad a través de un tubo de salida. El crecimiento celular alcanza un equilibrio en el que
la composicién del medio es aproximadamente constante y la tasa de crecimiento es igual
a la tasa de dilucién del medio. Las sondas miden constantemente el pH y la pOs (oxigeno
disuelto) (B). Durante el crecimiento continuo, las oscilaciones metabdlicas son detectables
por cambios ritmicos en pOs (Figura adaptada de Burnetti, 2017 [9]).

1.1.2. Oscilaciones en el consumo de oxigeno

En la naturaleza nos encontramos con fenémenos de caracter oscilatorio por doquier. El dia
v la noche, el ciclo celular, el ritmo circadiano y las estaciones del afo, son sélo algunos de
los ejemplos mas familiares. En esta investigacion, nos acercaremos al estudio de oscilaciones
presentes en cultivos del microorganismo unicelular Saccharomyces Cerevisiae, conocido co-
rrientemente como la “Levadura de la cerveza” o “Baker’s yeast” (Levadura de panaderia).
Cuando la levadura es cultivada al interior de un quimioestato, en fuentes de carbén como
la glucosa, el etanol o el acetaldehido, suministrando una cantidad moderada o minima de
nutriente, se producen oscilaciones que se manifiestan a través de la tasa de consumo de
oxigeno o la tasa de evolucién del C'Os, entre otras formas [58]. También se han observado
otras oscilaciones relacionadas con el consumo de glucosa y la produccién de biomasa [42][16].
Entender a cabalidad cuales son las causas de estas oscilaciones es una tarea pendiente.

El objetivo de este trabajo consiste, en construir un modelo matematico de las oscilaciones
en el consumo de oxigeno, en un cultivo continuo de levadura en condiciones de limitacion
de nutrientes. Este modelo debe ser coherente con el conocimiento biolégico disponible del
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metabolismo celular de la levadura.

Respecto del tema general de las oscilaciones en cultivos de levadura, se han ensayado
variadas explicaciones sin que a partir de ellas se haya podido construir una teoria definitiva.
Existen dos tipos de perspectivas en modelamiento oscilatorio del metabolismo de S. Cerevi-
siae; las que se han centrado principalmente en reacciones intracelulares y las que se enfocan en
procesos de transporte acoplados a cinéticas intracelulares sustancialmente concentradas[58].

El fenémeno oscilatorio, objeto de nuestro estudio, son las fluctuaciones sostenidas y
autéonomas, de la cantidad de oxigeno disuelto presente en el medio de cultivo de la levadura,
cuando esta crece en condiciones de continuidad y de limitacién de nutrientes. El proceso que
propicia las oscilaciones respiratorias se ha descrito de la siguiente manera. Cuando las célu-
las de levadura prototréficas crecen en un cultivo a una alta densidad, se privan de alimento
durante un periodo corto y luego se alimentan continuamente con bajas concentraciones de
glucosa. Como consecuencia de esto, la poblacion de células se vuelve altamente sincronizada
y sufre fuertes oscilaciones en el consumo de oxigeno. Cuando se cumplen estas condiciones, la
levadura exhibe ciclos robustos y altamente periddicos en forma de réfagas respiratorias [70].
Durante estas oscilaciones, las células pasan por fases en las que consumen oxigeno rapida-
mente, seguidas de fases mas largas en las que consumen mucho menos oxigeno. La duraciéon
del periodo de estos ciclos metabdlicos en tales condiciones de crecimiento, suele ser de apro-
ximadamente 4 a 5 horas, pero puede variar segin la tasa de adicién de glucosa [70]. Dichos
ciclos persisten mientras se suministren concentraciones continuas de glucosa a las células.

Este hecho atn resulta sorprendente, porque esperariamos que el consumo de oxigeno de
una poblacién de microorganismos aerdbicos, como S. Cerevisiae, presente un comportamien-
to estable en el tiempo. Esperariamos observar, un consumo decreciente de oxigeno, si los
microorganismos disminuyeran en nimero. Esparariamos observar un consumo creciente de
este, si la cantidad de microorganismos aumentara y un consumo constante, si la cantidad de
estos organismos no cambiara. Contradiciendo este hecho, se observé a mediados del siglo XX
que la cantidad de oxigeno disuelto y los niveles de pH en un cultivo de S. Cerevisiae, presenta
fluctuaciones en forma oscilante cuando esta levadura crece en condiciones de continuidad y
de limitaciéon de nutrientes. Este hecho fue observado inicialmente por R. K. Finn y R. E.
Wilson en el afio 1954 [20] y por H. Kaspar von Meyenburg en el afio 196@[38]. A partir de
estas observaciones se debid reconocer, que el consumo de oxigeno de una poblacién de S.
Cerevisiae no siempre serd una funcién mondtona del tiempo, sino que por el contrario, el
consumo de oxigeno, en las condiciones de cultivo consideradas, presenta un comportamiento
oscilatorio a lo largo del tiempo.

'H. Kaspar von Meyenburg (1969). Energetics of the budding cycle of Saccharomyces cerevisiae during
glucose limited aerobic growth.
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Figura 1.2: El YMC. Durante el modo por lote, las células crecen a una alta densidad y luego
se dejan en inanicién durante al menos 4 horas. Durante el modo continuo (flecha), medio
conteniendo glucosa es introducido en el cultivo a una tasa de dilucién constante ( 0,09 a 0,1
horas™1). dOs se refiere a la concentracién (% de saturacién) del oxigeno disuelto en el medio
(Figura adaptada de Tu et al. , 2005 [70]).

1.1.3. Ciclo metabdlico de la levadura

Recientes estudios de expresién genética han mostrado como las variaciones respiratorias estan
intimamente relacionadas con el metabolismo celular de S. Cerevisiae. Para nuestro propoésito,
no es importante describir la naturaleza bioquimica de estas relaciones, mas, si es necesario
mencionar y bosquejar brevemente, la conexién general entre estas variaciones respiratorias y
el metabolismo celular, ademas de considerar con mayor detalle, los aspectos mas relevantes
para la configuracién de nuestro modelo.

Estudios completos de micromatrices, han revelado que mas de la mitad del genoma de
la levadura, se expresa periddicamente en funcién de oscilaciones respiratorias de modo muy
preciso, hecho que especificaria un programa ampliamente orquestado responsable de regu-
lar numerosas salidas celulares [69]. Esta expresién periddica, de gran parte del genoma de
la levadura, se encuentra conectada con gran variedad de procesos celulares, los cuales dan
forma a una serie de procesos encadenados entre si, de forma periddica, serie recurrente de
eventos bautizada por Tu et al. como “Ciclo metabdlico de la levadura” (Yeast Metabolic Cy-
cle (YMCQ)) [70]. E1 YMC consiste, a grosso modo, en la compartimentalizacién temporal de
eventos celulares claves. Entre estos eventos celulares claves, son de especial interés aquellos
relacionados con la produccién de proteinas relacionadas con el manejo de la energia. Gran
parte de las proteinas con funciones asociadas con la energia y el metabolismo, son codifi-
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cadas por genes que tienden a expresarse con una periodicidad excepcionalmente precisa y
robusta, hecho que parece sugerir que estos ciclos, podrian ser intrinsecamente metabdlicos
[70]. Los estudios de los perfiles de expresién génica temporal, revelaron tres superctimulos de
expresion génica, aptos para definir con ellos las tres fases principales del YMC: OX (ozidativa-
respiratoria), RB (reductiva-constructiva) y RC (reductiva-de carga). Diferentes categorias de
genes alcanzan su punto maximo en cada fase y cada célula pasaria sucesivamente por cada
una de las tres fases durante cada YMC [70] (Figura 1.3).

A

R/C

d0, Ox R/B |

Time
Ox = Oxidative
R/B = Reductive, Building
R/C = Reductive, Charging

Figura 1.3: Compartimentalizaciéon temporal. Procesos celulares claves estan compartimenta-
lizados en el tiempo por via del ciclo metabdlico. La progresién ordenada a través de distintas
fases (OX, RB, RC) del ciclo metabdlico permite una compartimentalizacién temporal de nu-
merosos procesos celulares y metabdlicos (Figura adaptada de Tu, 2005 [70]).

Un aspecto interesante de mencionar, consiste en el establecimiento de la relacién, entre las
fases del metabolismo celular y las instancias de alto consumo de oxigeno (HOC, High Oxygen
Consumption), y de bajo consumo de oxigeno (LOC, Low Oxygen Consumption). Como se
puede observar, comparando las figuras 1.3 y 1.4, las fases del YMC correspondientes a un
alto consumo de oxigeno, HOC, son la fase Oxidativa (OX) y la fase Reductiva-Construtiva
(RB), mientras que la fase Reductiva-Carga (RC), corresponde a una etapa de bajo consumo
de oxigeno, LOC.
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Figura 1.4: Bajo consumo de oxigeno, LOC, trazas de oxigeno disuelto encerradas en elipses
verdes. Alto consumo de oxigeno, HOC, trazas de oxigeno disuelto encerradas en elipses rojas
(Figura adaptada de Slavov, 2011) [66].

1.1.4. Ciclo de division celular

Se denomina ciclo de divisién celular (CDC) o simplemente ciclo celular al conjunto ordenado
de sucesos que conducen al crecimiento de la célula y la divisién en dos células hijas. Las etapas
son: G1-S-G2 y M ﬂ Las células de S. Cerevisiae respetan este orden, crecen y se reproducen
segin este esquema. Sin bien las células de S. Cerevisiae respetan las etapas mencionadas,
su divisiéon en dos células hijas se produce de forma asimétrica en un proceso denominado

Gemacién (Budding). [

1.1.5. Relacién YMC-CDC

Es importante abordar la relacién existente entre el ciclo metabdlico y el ciclo celular. Se ha
descrito un acoplamiento entre el ciclo metabdlico (YMC) y el ciclo de divisién celular (CDC)

24F] ciclo de divisién mitética de S. Cerevisiae consta de una fase de replicacién del DNA (S) y de otra de
segregacién cromosémica o mitosis (M) separadas por dos fases (G1) (entre M del ciclo previo y S) y G2 (entre
S y M), finalizando con la separacién citopldsmica o citoquinesis. A diferencia de otras células eucariotas, y
debido a que las células se dividen mediante gemacién, esta divisién no es exactamente simétrica, generandose
una célula hija de menor tamano que la célula madre. Mientras que esta ultima puede iniciar inmediatamente
un nuevo ciclo de divisidn, la célula hija debe crecer hasta alcanzar un tamafo critico antes de iniciar su primer
proceso de gemacién. En base a criterios morfoldgicos y genéticos, se ha definido un punto clave en la fase G1,
denominado Start (equivalente al ‘restriction point’ de células superiores), a partir del cual las células inician la
emergencia de la yema al mismo tiempo que preparan la maquinaria para la replicacién y posterior segregacién
cromosémica. Start también es el punto del ciclo en el que confluyen senales externas (feromonas sexuales,
estado nutricional del medio, etc.) y las células ‘deciden’ si continuar el ciclo de divisién o entrar en un estado
de reposo en forma de células no gemadas (a menudo denominado fase G0)”[31].

3La gemacion (del latin gemma “joya o brote”) es un tipo de reproduccién asexual. Es una divisién desigual:
consiste en la formacién de protuberancias llamadas yemas en el cuerpo del espécimen progenitor que, al crecer
y desarrollarse, originan nuevos organismos. Estos pueden separarse del progenitor, o bien quedar unidos a él,
formando una colonia. A nivel unicelular, es un proceso de mitosis asimétrica que se da en algunos seres unicelu-
lares, como las levaduras https://es.wikipedia.org/w/index.php?title=Gemacion&oldid=153608023 [74].


https://es.wikipedia.org/w/index.php?title=Gemacion&oldid=153608023

Daughter
Start

l
ORIO

G1 - Growth S \ G2 \ M
Mother

>

Time / Cell Growth

Figura 1.5: Crecimiento, tamano y Start (Inicio) del ciclo celular en las células madre e
hija. Las madres pueden volver a dividirse rapidamente después de una pequena cantidad de
crecimiento, mientras que las hijas deben crecer significativamente antes de alcanzar el umbral
de tamarfio critico requerido para la division (Figura adaptada de Burnetti, 2017 [9].

[38, 60]. El acoplamiento entre el YMC y el CDC es una cuestién abordada recientemente por
Burnetti et al. [10] ﬂ quienes aportan evidencia de que el Inicio (Start) del ciclo de divisién
celular y la etapa de alto consumo de oxigeno (HOC) estén estrechamente vinculadas a través
de diferentes cepas de S. Cerevisiae y distintas tasas de crecimiento. Como explicacién de
este acoplamiento, se sugiere el siguiente mecanismo. Una vez que las células han acumula-
do reservas de energia suficientes, y por ende, se encuentran en los momentos finales de su
etapa de crecimiento G1, estas pueden comprometerse irremisiblemente a iniciar el ciclo de
divisién celular, entrando directamente a la etapa S, quemando los carbohidratos acumulados
y aumentando de manera explosiva el consumo de oxigeno. La logica detrds de este acopla-
miento YMC-CDC seria, asegurar la replicacién del ADN, permitiendo que la divisién celular
sélo ocurra cuando se hayan acumulado suficientes reservas de energia [10]. Sin embargo, es-
tudios posteriores, revelaron que las células ingresan a la fase de alto consumo de oxigeno
del ciclo metabdlico, antes de pasar el Start, lo que respalda un modelo de acoplamiento del
ciclo metabdlico - ciclo de divisién celular; en el que el ciclo metabdlico méas corto controla el
compromiso con el ciclo celular, probablemente a través de la modulaciéon de los umbrales de
tamano celular [9].

Se sabe que, a pesar haber cierta independencia entre el YMC y el CDC, la replicacién
del ADN ocurre una vez por YMC [40, [4T]. A decir de Futcher [21], hay que aceptar que las
oscilaciones metabdlicas se encuentran, por decirlo de alguna de manera, superimpuestas al
ciclo celular. Al menos, el hecho de que la relaciéon entre YMC y copia del ADN sea de uno
a uno, asegura que no podrian haber dos CDC en un YMC o viceversa. Por otro lado, el
YMC esta definido en funcién de los estados HOC y LOC. Al estado HOC le corresponden

4 Anthony. J. Burnetti, Mert Aydin, and Nicolas E. Buchler. Cell Cycle start is coupled to entry into the
yeast metabolic cycle across diverse strains and growth rates. Molecular Biology of the Cell, 27:64-74, 2016.



las fases OX y RB, mientras que con el estado LOC se encuentra asociada la fase RC. Se
ha observado que la replicacién del ADN es un proceso que ocurre en la fase RC [9]. Como
dato anexo, es interesante notar que se midié que, a tasas de dilucién D mas bajas las células
pasan més tiempo en LOC, acumulando carbohidratos de almacenamiento, debido al menor
flujo de glucosa. Una vez que estas células, que se encuentran en LOC, alcanzan un umbral
metabdlico, cambian a HOC y catabolizan sus carbohidratos almacenados para proporcionar
biomasa y energia, utiles para el crecimiento y la divisién celular [I0} 21].

La quema y el almacenamiento de carbohidratos es un proceso ciclico, del cual se tiene
una imagen muy elocuente desde hace ya tiempo [57, 43]. En su larga y lenta etapa de creci-
miento (G1), en condiciones de limitacion de glucosa, las células hijas crecen por respiracién
oxidando parte de la glucosa, y guardando parte de esta como glucégeno y trehalosa. Luego,
en algin momento de G1 tardio, un evento, posiblemente un maximo en el nivel de AMP
ciclico EL detiene este proceso. El almacenamiento cesa y las reservas de glucégeno y trehalosa
se transforman repentinamente en glucosa, la cual se usa via glucélisis para realizar respi-
racién oxidativa, aumentando en gran manera con esto la tasa de respiracién. Sin embargo,
la repentina explosién de glucosa es demasiada como para poder ser absorbida por la via
respiratoria, de modo tal que el resto fermenta a etanol. Increiblemente, en este punto del
ciclo, las células en régimen estricto de escasez de glucosa, excretan etanol de la glucdlisis
producto del desborde de glucosa, en el medio. De esta manera, obtienen parte de su energia
de la fermentacién, al quemar repentinamente sus carbohidratos, incrementando en gran me-
dida su produccién de ATP ﬂ Las células expresan ARNm para las ciclinas Clnl y CIn2 y
se comprometen a atravesar el ciclo celular pasando el punto conocido como Start, entrando
en consecuencia a la llamada fase S, en donde ocurre la replicaciéon del ADN. Luego, habien-
do agotado las reservas de carbohidratos, las células detienen la fermentacién, respiran a un
ritmo bajo permitido por las pequenas cantidades de glucosa (y ahora etanol) disponibles en
el medio y comienzan el arduo proceso de almacenamiento de carbohidratos para el préoximo
ciclo celular (Figura 1.6) [70] 21].

5E1 AMP ciclico, o simplemente AMPc (monofosfato de adenosina ciclico), un importante segundo mensajero
intracelular en las células eucariotas. E1 AMPc juega un papel crucial en la transduccién de sefiales celulares
y estéd involucrado en la regulacion de numerosos procesos fisiolégicos.

SE1 ATP (adenosin trifosfato) es la moneda energética de las células. Funciona como un portador de energia
al liberarla cuando se rompe un enlace entre sus grupos fosfato. Esta energia impulsa una variedad de procesos
celulares cruciales, desde la contraccién muscular hasta la sintesis de moléculas esenciales. En resumen, el ATP
desempena un papel central en proporcionar la energia necesaria para las actividades celulares fundamentales.
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Figura 1.6: El ciclo metabdlico en células de levadura de crecimiento lento. El ciclo de los
carbohidratos almacenados. En las células de crecimiento lento, el glucdégeno y la trehalosa se
acumulan durante G1 y luego se liquidan repentinamente hacia al final de G1. Poco después
de la liquidacion, los niveles de ARNm de las ciclinas de G1, Clnl y Cln2 alcanzan un méximo,
se pasa el Start y entonces ocurre la gemacién y la sintesis de ADN. Datos adaptados de Silljé
et al., 1997 [65]. Figura adaptada de Futcher, 2006 [21].

Entonces, ;De qué modo podrian relacionarse la secuencia de eventos del CDC con los
estados HOC y LOC?

Las observaciones sugieren que en cierto momento la poblacién de S. Cerevisiae se sincro-
niza en torno a un mismo evento del ciclo celular, de manera que producto de esta orquestacion
obtenemos como consecuencia el fendmeno del alto y bajo consumo de oxigeno [21].

1.1.6. Sincronizacion colectiva

., Como se produce esta sincronizacién colectiva de las células de S. Cerevisiae?.

Un modelo simplificado de este fendémeno es el siguiente. Al comienzo de cada YMC una frac-
cién de la poblacién de células se compromete a catabolizar los carbohidratos almacenados,
ingresar al HOC e iniciar el CDC. Estas levaduras “comprometidas” secretan metabolitos
que convocan a otras levaduras “susceptibles” con suficientes carbohidratos almacenados para
catabolizarlos, para ingresar al HOC. Esto produce una avalancha de levaduras comprome-
tiéndose sincrénicamente a iniciar el HOC. No todas las levaduras responden de esta manera
a las senales emitidas por las levaduras en estado de compromiso. Existe otra fraccién de
células en estado refractario las cuales no han acumulado suficientes reservas de energia o
suficiente biomasa para optar a iniciar el CDC. Durante el YMC, esta fraccion de células
refractarias en LOC acumulard reservas de energia y biomasa necesarias para iniciar el HOC
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espontaneamente, comprometerse al CDC y convocar por medio de sus senales a una nueva
fraccién de células susceptibles para entrar al HOC [10]. (Figura.1.7)
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Figura 1.7: Modelo simplificado de acoplamiento YMC-CDC (Figura adaptada de Burnetti
et al., 2016) [10].

El proceso representado por la figura 1.7 puede describirse de la siguiente manera. La traza
de oxigeno disuelto dO2 indica LOC (linea celeste) y HOC (linea roja) en multiples YMC. Al
comienzo de cada YMC, una fraccién de la poblacion (células rojas con brotes) se compromete
a catabolizar los carbohidratos almacenados, ingresando al HOC e iniciar el CDC. Estas leva-
duras “comprometidas” secretan metabolitos, que activan otras levaduras “susceptibles” con
suficientes carbohidratos almacenados para catabolizar sus carbohidratos almacenados [63].
Dicha senalizacién autocatalitica a través de metabolitos secretados provoca una avalancha de
levaduras susceptibles que ingresan sincréonicamente al HOC y se comprometen con el CDC.
Sin embargo, esta claro que no todas las levaduras se comprometen con CDC cada YMC. El
resto de la poblacién de levadura en LOC (células celestes) es refractaria a las sefiales me-
tabdlicas, porque las células no han acumulado suficientes reservas de energia (puntos verdes)
para comprometerse en el YMC, y/o no han acumulado suficiente biomasa para iniciar el Start
del ciclo celular. Durante el proximo YMC, estas levaduras “refractarias” en LOC contintan
acumulando sus reservas de almacenamiento de carbohidratos y biomasa, de modo que una
nueva fraccién de levaduras estard lista para iniciarse espontaneamente y provocar que otras
levaduras susceptibles se comprometan en el siguiente YMC. La poblacién de levadura en
un quimiostato bajo en glucosa se auto-organiza en multiples cohortes escalonadas, de modo
que solo una cohorte ingresa sincrénicamente al CDC cada YMC (es decir, acoplamiento de
uno a algunos). Es probable que las células migren entre cohortes con el tiempo, debido a la
variabilidad de célula a célula tanto en el YMC como en el CDC. Naturalmente este proceso
puede describirse con mucho mas detalle. Sin embargo, para nuestro propoésito de modela-
miento matematico, nos mantendremos en este nivel de complejidad. Una descripcién simple,
que es coherente con el proceso descrito, es la propuesta por Futcher en el ano 2006 [21] :
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... pero una explicacién simplificada es que las células que primero liquidan sus carbohidratos
almacenados y secretan etanol estan alimentando con etanol a otras células en el cultivo.
Por lo tanto, las células que reciben el etanol pueden crecer més rapido y alcanzar a las
células mas avanzadas. Una vez que se ponen al dia, también se convierten en alimentadores
en lugar de receptores. Para decir lo mismo de una manera diferente, cada célula tiene una
oscilacién interna de almacenamiento y luego quema de carbohidratos, y estas oscilaciones
pueden sincronizarse a través de un cultivo completo por los efectos de alimentacion cruzada
del etanol liberado y quizds otros metabolitos (por ejemplo, se han sugerido sulfuro de
hidrégeno y acetaldehido) [52].

Futcher, 2006 [21].

Se ha observado que las células comprometidas secretan metabolitos que actidan como
sefiales para atraer a otras células susceptibles, lo que desencadena un ciclo sincrénico de
compromiso y entrada al estado de alto consumo. Sin embargo, no todas las células respon-
den a estas senales, ya que algunas permanecen refractarias debido a la falta de reservas
energéticas o biomasa suficientes. A medida que el ciclo avanza, estas células refractarias acu-
mulan las reservas necesarias para iniciar el siguiente ciclo y desencadenar la entrada de una
nueva fraccién de células susceptibles.

En conclusion, el estudio de la sincronizacién colectiva en el cultivo de levadura S. cere-
visiae es de gran importancia para comprender los mecanismos que subyacen al fenémeno de
las oscilaciones en el consumo de oxigeno de la levadura. El modelo simplificado propuesto
por Burnetti et al. [I0] en conjunto con la explicacién proporcionada por Futcher [21] pro-
pone el mecanismo que subyace a esta sincronizaciéon colectiva. Consideramos que estas dos
ideas generales son idoneas para desarrollar, con ayuda de ellas, un modelo matematico de las
oscilaciones en el consumo de oxigeno de un cultivo continuo de levadura en condiciones de
limitacién de nutrientes.
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1.2. Planteamiento del Problema

1.2.1. Objetivo

Construir un modelo matematico que reproduzca las oscilaciones en el consumo de oxigeno
en un cultivo de levadura en condiciones de continuidad y limitacién de nutrientes.

1.2.2. Pregunta de Investigacion

i Por qué se producen oscilaciones autosostenidas en la concentracién de oxigeno disuelto en
un cultivo continuo de levadura en condiciones de limitacién de nutrientes?

1.2.3. Justificacion del estudio

El objetivo de estudio posee una significancia destacada en diversos aspectos. En primer lugar,
comprender y modelar el cultivo de levadura en condiciones de continuidad y limitacién de
nutrientes, resulta 0til para la industria biotecnolégica y alimentaria. Las levaduras desem-
pefian un papel esencial en la produccién de alimentos, bebidas y productos bioquimicos. Al
desarrollar un modelo matematico consistente con el fendémeno biolégico, se proporciona una
herramienta valiosa para optimizar y controlar los procesos de cultivo de levadura. El desem-
peno que tenga el modelo en la simulacién de oscilaciones en el consumo de oxigeno, asi como
también en la simulacién de otros tipos de oscilaciones asociadas, es un item de particular
interés. Las oscilaciones metabdlicas pueden tener implicaciones relevantes en la produccion
de metabolitos deseados. Al desencadenar respuestas adaptativas en las levaduras, dichas os-
cilaciones pueden influir en la produccién de productos metabdlicos especificos. Por lo tanto,
comprender y predecir estas oscilaciones resulta crucial para maximizar la eficiencia y el ren-
dimiento de los procesos biotecnolégicos que involucran levaduras.

Por otro lado, construir el modelo sobre la base del conocimiento biolégico del metabolismo
celular, garantiza su coherencia con los mecanismos biolégicos subyacentes. Esto proporciona
una interpretacién mas precisa de los resultados y una comprension més profunda de los fac-
tores que influyen en el comportamiento del cultivo de levadura.

En resumen, construir un modelo mateméatico del cultivo de levadura en condiciones de
continuidad y limitacién de nutrientes, capaz de generar oscilaciones en el consumo de oxigeno,
es significativo tanto, desde una perspectiva aplicada en la industria biotecnolégica y alimen-
taria, como desde una perspectiva cientifica, al contribuir a la optimizacién de los cultivos
microbianos y al ensanchar el entendimiento de los procesos metabdlicos llevados a cabo por
la levadura.
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Capitulo 2

Marco teoérico

2.1. Fundamentos de modelamiento matematico de cultivos
continuos de levadura en condiciones de limitacion de nu-
trientes

El modelamiento matemaético de los cultivos de levadura en condiciones de continuidad y li-
mitacién de nutrientes se benefician de varios enfoques y herramientas. Se utilizan modelos
cinéticos, como el modelo de Monod [50], para describir el consumo de oxigeno y nutrien-
tes por parte de los microorganismos. También se consideran efectos de retroalimentacién y
andlisis de estabilidad [32, [68, 25] y podrian emplearse modelos de reaccién-difusién, para
comprender las oscilaciones en el consumo de oxigeno [53]. En el modelamiento microbiano,
también tienen un lugar importante los enfoques basados en matematica discreta, como redes
de Petri [62, 13] y autématas celulares [26], los que permiten recrear una dindmica discreta del
sistema. Estas herramientas ayudan a comprender los mecanismos de las posibles oscilaciones
y predecir su comportamiento en diferentes condiciones experimentales.

Los modelos basados en la teoria de la cinética de crecimiento microbiano describen cémo
los microorganismos consumen el oxigeno y otros nutrientes, en funciéon de su tasa de creci-
miento y la disponibilidad de los sustratos. En particular, el modelo de Monod [50], propuesto
por Jacques Monod, es ampliamente utilizado en estudios de crecimiento microbiano bajo
limitacién de nutrientes y describe como la tasa de crecimiento de un microorganismo esta
relacionada con la concentracion del sustrato limitante. Este modelo se basa en la idea de
que la tasa de crecimiento microbiano depende de la velocidad, a la cual los microorganismos
consumen los nutrientes disponibles.
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La ecuacion del modelo de Monod es la siguiente:

S

m), (2.1)

u = Mmaz(
donde:

= 4 es la tasa de crecimiento especifico microbiano.
= lmaz €S la tasa maxima de crecimiento especifico microbiano.
= S es la concentracion del sustrato limitante.

= K es la constante de saturacion, que representa la concentracion del sustrato a la cual
la tasa de crecimiento es la mitad de la tasa maxima.

En la ecuacién (2.1), se puede observar que a medida que la concentracién del sustrato S
se acerca a cero, la tasa de crecimiento especifico y tiende a cero, lo cual indica que el creci-
miento estd limitado por la disponibilidad de nutrientes. A medida que la concentracién del
sustrato aumenta, la tasa de crecimiento también aumenta hasta alcanzar su valor maximo
(maz)- Sin embargo, a medida que la concentracién del sustrato contintia aumentando, la
tasa de crecimiento se estabiliza y no puede aumentar mas, lo cual estd representado por la
constante de saturaciéon K, (Figura 2.1).

En el modelamiento de las oscilaciones en el consumo de oxigeno, es importante consi-
derar aspectos mas alla de los modelos de crecimiento microbiano. Uno de los aspectos que
puede desempenar un papel crucial en la generacion de oscilaciones, es el efecto de la retro-
alimentacién positiva y negativa entre los componentes del sistema. Estos efectos se refieren
a cémo las variaciones en una variable afectan a otras variables del sistema, creando un ciclo
de retroalimentacion que puede amplificar o amortiguar las oscilaciones.

En el caso especifico del cultivo de levadura, existen interacciones complejas entre el consu-
mo de oxigeno, la produccién de productos metabélicos y la regulacién génica [69], que pueden
influir en la generacién de oscilaciones. Estas interacciones se capturan mediante modelos de
retroalimentacion, que utilizan ecuaciones y relaciones para describir cémo los cambios en
una variable afectan a las demas. Por ejemplo, la produccién de productos metabélicos puede
influir en el consumo de oxigeno, y a su vez, el consumo de oxigeno puede afectar la regulacion
génica [67]. Estos modelos permiten estudiar cémo estas interacciones complejas contribuyen
a las oscilaciones observadas en el sistema. En conjunto con considerar las interacciones entre
los componentes del sistema, se utilizan técnicas de andlisis de estabilidad para investigar
las condiciones en las que se producen las oscilaciones. El andlisis de estabilidad tiene como
objetivo determinar si los estados estacionarios del sistema son estables o inestables frente a
pequenas perturbaciones [22]. En el contexto de las oscilaciones en el consumo de oxigeno, se
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Modelo de Monod

Tasa de crecimiento especifica (W)

—— p=pmax*(S/(Ks + 5))
® (Ks, p(Ks)=pmax/2)
0.0 —=—- U= pumax

T T
0.0 0.2 0.4 0.6 0.8 1.0
Concentracion del sustrato (S)

Figura 2.1: Modelo de Monod. La condicién p(K) = #22= en el modelo de Monod representa
un punto clave en la relacién entre la tasa especifica de crecimiento p y la concentracion
del sustrato (S). En este punto, la tasa de crecimiento alcanza la mitad de su valor maximo
Hmaz Fsta condicion es importante para comprender cémo los microorganismos responden y
se adaptan a diferentes concentraciones de sustrato en su entorno, y proporciona informacion
sobre el equilibrio entre la demanda metabdlica y la disponibilidad de nutrientes.

exploran las bifurcaciones [25], que corresponden a cambios cualitativos en el comportamiento
del sistema a medida que se modifican los pardmetros o las condiciones iniciales.

Las bifurcaciones son puntos criticos donde se produce un cambio abrupto en el compor-
tamiento del sistema. Estas pueden manifestarse como cambios en la amplitud, frecuencia o
forma de las oscilaciones. El analisis de bifurcaciones permite identificar los puntos en los que
ocurren estas transiciones y comprender cémo los cambios en los parametros del modelo o en
las condiciones iniciales pueden dar lugar a diferentes tipos de oscilaciones [32] 68 25].

Una herramienta comtinmente utilizada en el analisis de bifurcaciones es la representacion
grafica de las bifurcaciones. Este tipo de grafico muestra como cambian las soluciones del
sistema a medida que se varian los parametros. En el contexto de las oscilaciones en el con-
sumo de oxigeno, el diagrama de bifurcaciones puede representar cémo varia la amplitud de
las oscilaciones en funcién de un parametro especifico, como la tasa especifica de crecimiento
microbiano. Esta representaciéon visual ayuda a identificar las regiones en las que se producen
bifurcaciones y a comprender como los cambios en los pardmetros influyen en las oscilaciones.
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A continuacion, se muestra un ejemplo de un diagrama de bifurcaciones para ilustrar este
concepto. En este caso, se considera un sistema simplificado que describe las oscilaciones en
el consumo de oxigeno en un cultivo de levadura. El parametro que se varia es la tasa de
crecimiento especifico microbiano, y la variable de interés es la amplitud de las oscilaciones
(Figura 2.2).

Diagrama de bifurcaciones

1.0 A

o o o
'S o ™
L L L

Amplitud de las oscilaciones

o
[
L

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Tasa especifica de crecimiento microbiano (u)

Figura 2.2: Diagrama de bifurcacién. Se observa un diagrama de bifurcaciones de la amplitud
de las oscilaciones en funcién de la tasa especifica de crecimiento u. Se puede observar como
la amplitud de las oscilaciones varia de acuerdo a un modelo cuadratico.

El estudio de las oscilaciones en el consumo de oxigeno en un cultivo continuo de leva-
dura bajo limitacién de nutrientes bien podria involucrar también el uso de herramientas
matemdticas mas avanzadas, como los modelos de reaccién-difusion [53]. Estos modelos son
especialmente tutiles cuando se considera la difusién de los sustratos y productos metabdlicos
a través del medio de cultivo, ya que esta difusion puede tener un impacto significativo en
las oscilaciones observadas. Anticipamos que uno de los aspectos centrales del modelo simpli-
ficado de sincronizacion descrito en el capitulo anterior, involucra la difusiéon en el medio de
seniales metabdlicas.

Para comprender mejor el papel de la difusién en las oscilaciones, se deberia utilizar la
ecuacion de difusién [53], que describe cémo las concentraciones de los sustratos y productos
metabdlicos cambian en funcién de su difusién en el medio. En combinacién con las ecuaciones
cinéticas que describen el consumo de oxigeno por parte de la levadura [50], se pueden obtener
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modelos mas completos, que no solo tienen en cuenta las tasas de consumo y produccién, sino
también la distribucién espacial de las concentraciones en el quimiostato.

Para ilustrar este enfoque, consideremos la ecuacion de difusién en una dimensién, que
describe como una concentracién C' de un sustrato se propaga en el medio de cultivo a lo largo
del tiempo. La ecuacién de difusién se puede expresar como:

oC 02C
o = Pog

donde %—? es la tasa de cambio de la concentracién en el tiempo, D es el coeficiente de difusién
y %QTQ es la segunda derivada espacial de la concentracién.

Al combinar la ecuacién de difusién con las ecuaciones cinéticas que describen el consumo
de oxigeno por parte de la levadura, se obtendria un sistema de ecuaciones que permitiria
simular la dindmica del consumo de oxigeno. Estas ecuaciones se pueden resolver numeérica-
mente utilizando métodos como el método de diferencias finitas o el método de elementos
finitos. En el contexto de las oscilaciones en el consumo de oxigeno en un cultivo continuo
de levadura, el sistema de ecuaciones de reaccidon-difusion y cinéticas se podria expresar de
la siguiente manera. La ecuacion de difusién del oxigeno describe la difusiéon espacial de la
concentracién de oxigeno a través del medio de cultivo. Esta se expresa como:

00

— =D-V?0

ot ’
donde % es la tasa de cambio de la concentracion de oxigeno en el tiempo, D es el coeficiente
de difusién y V2 es el operador laplaciano que describe la difusién espacial de la concentracién.
Por otro lado, una ecuacién cinética de Monod describiria el consumo de oxigeno por parte
de la levadura y se expresaria como:

p- O
r=——,
K+0
donde r es la tasa de consumo de oxigeno, p es la tasa de crecimiento de la levadura, O es la
concentracién de oxigeno y K es la constante de saturacién.

Una vez que se obtienen las soluciones numéricas, se pueden realizar andlisis y visualiza-
ciones para comprender mejor la dindmica en el consumo de oxigeno. Por ejemplo, se pueden
trazar perfiles de concentracién a lo largo del tiempo y el espacio para observar la dindmica
de la difusién y consumo de oxigeno en el quimiostato. Estas visualizaciones pueden propor-
cionar informacion valiosa sobre los patrones espaciales y temporales presentes. El modelo
de reaccion-difusién también permite estudiar como los cambios en los parametros del siste-
ma afectan las posibles oscilaciones. Por ejemplo, se podrian realizar experimentos virtuales
variando el coeficiente de difusiéon para analizar cémo diferentes tasas de difusién afectan la
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aparicion y la amplitud de las oscilaciones en el consumo de oxigeno.

En el estudio de las oscilaciones en el consumo de oxigeno en cultivos continuos de le-
vadura bajo limitacién de nutrientes, se han empleado técnicas de analisis no lineal y teoria
de sistemas dindmicos para profundizar en la comprensién de estos fenémenos complejos
[11L 15]. Estas herramientas matematicas avanzadas ofrecen una perspectiva més detallada de
las oscilaciones y permiten investigar la estabilidad de los puntos de equilibrio, identificar bi-
furcaciones y analizar la existencia de atractores cadticos o periédicos en el sistema [32] [68, 25].

Uno de los conceptos fundamentales en el anélisis no lineal es la estabilidad de los puntos de
equilibrio. En el contexto de las oscilaciones en el consumo de oxigeno, un punto de equilibrio
representa un estado en el que no hay cambios en las concentraciones de oxigeno y nutrientes.
El analisis de estabilidad busca determinar si estos puntos de equilibrio son estables, es decir,
si el sistema tiende a volver a ellos después de pequenas perturbaciones, o si son inestables
y el sistema se aleja de ellos. El andlisis de estabilidad se puede realizar mediante diversas
técnicas, como el calculo de los autovalores de la matriz jacobiana del sistema en el punto
de equilibrio [32]. Los autovalores proporcionan informacién sobre la estabilidad del punto
de equilibrio: si todos los autovalores tienen partes reales negativas, el punto de equilibrio es
estable, mientras que si al menos uno de los autovalores tiene una parte real positiva, el punto
de equilibrio es inestable.

Ademads de la estabilidad de los puntos de equilibrio, las técnicas de andlisis no lineal
también permiten identificar bifurcaciones en el sistema [25]. Una bifurcacién ocurre cuan-
do hay un cambio cualitativo en el comportamiento del sistema a medida que se modifican
los parametros o las condiciones iniciales. Por ejemplo, pueden surgir bifurcaciones de Hopf
[22,[15], en las cuales el sistema pasa de un comportamiento estacionario a un comportamiento
oscilatorio a medida que se varian ciertos parametros. Estas bifurcaciones son cruciales para
comprender cémo se generan las oscilaciones en el consumo de oxigeno y cémo evolucionan a
medida que cambian las condiciones del cultivo.

La teoria de sistemas dinamicos también es util para examinar la existencia de atractores
cadticos o periddicos en el sistema [2], [68]. Un atractor es un conjunto de valores hacia el
cual tiende el sistema a medida que evoluciona en el tiempo. En el caso de las oscilaciones en
el consumo de oxigeno, se pueden presentar atractores periédicos, que representan patrones
repetitivos de oscilacién, o atractores cadticos, que exhiben comportamiento aparentemente
aleatorio pero determinista. FEstos atractores pueden ser identificados mediante técnicas como
el mapeo de Poincaré [32], que consiste en observar la evolucién del sistema en planos de
secciéon transversal a ciertos puntos o trayectorias.

Para ilustrar estas ideas, consideremos un sistema hipotético de consumo de oxigeno en un
cultivo microbiano. Supongamos que tenemos un modelo matematico que describe la dindmi-
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ca del sistema, dado por las siguientes ecuaciones diferenciales:

dO wu-O-N

_ g 2.2
dt Ky+ N k-0, ( )
dN -O-N

___MmON_ (2.3)

dt Y- (Kxy+N)

donde O representa la concentraciéon de oxigeno, IV representa la concentracién de nutrientes,
t es el tiempo, u es la tasa especifica de crecimiento, K es la constante de saturacién de
nutrientes, k es la constante de consumo de oxigeno y Y es el rendimiento en biomasa por
unidad de oxigeno consumido.

La ecuacién (2.2) describe la tasa de cambio de la concentracién de oxigeno. En el segundo
miembro de la ecuacién (2.2), el primer término modela la tasa de produccién de oxigeno de-
bido al crecimiento de los microorganismos. Esta tasa depende de la concentracién de oxigeno,
la concentracién de nutrientes y la constante de saturacién de nutrientes K. A medida que la
concentracién de nutrientes aumenta, la tasa de produccién de oxigeno también aumenta, pero
se satura a medida que la concentracion de nutrientes se acerca a K. El segundo término de
la ecuacién (2.1) representa la tasa de consumo de oxigeno, donde k es la constante de con-
sumo. Si la tasa de produccién de oxigeno es mayor que la tasa de consumo, la concentracion
de oxigeno aumentara, y viceversa.

La ecuacién (2.3) describe la tasa de cambio de la concentracién de nutrientes. El segundo
miembro de la ecuacién (2.3) representa la tasa de consumo de nutrientes debido al crecimien-
to de los microorganismos. Esta tasa depende de la concentracién de oxigeno, la concentracién
de nutrientes, la constante de saturaciéon de nutrientes K y el rendimiento en biomasa por
unidad de oxigeno consumido Y. A medida que la concentracién de oxigeno aumenta, la tasa
de consumo de nutrientes disminuye. El término Y - (Kx + N) en el denominador del segun-
do miembro de la ecuacién (2.3) asegura que la tasa de consumo de nutrientes se reduzca a
medida que la concentracién de nutrientes se acerca a K.

Para comprender mejor las propiedades dindmicas del sistema, podemos realizar simula-
ciones utilizando Python [72] y sus bibliotecas cientificas, como NumPy, SciPy y Matplotlib
[55, B4]. A continuacién se muestra un ejemplo de la evolucién de las concentraciones de
oxigeno y nutrientes en el tiempo, utilizando valores numéricos particulares para los parame-
tros del modelo (2.2)-(2.3) (Figura 2.3).
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Figura 2.3: Gréfica de la evolucion de las concentraciones de oxigeno y nutrientes en un sistema
dindmico. Condiciones iniciales: Oy = 1,0, Ny = 2,0. Parametros: u = 0,5, Ky = 1,0, £k = 0,1,
Y =0,8.

Por otro lado, ademas de las simulaciones numéricas, podemos aplicar técnicas de anélisis
no lineal y sistemas dindmicos al modelo (2.2)-(2.3) para obtener informaciéon mds detalla-
da sobre sus propiedades cualitativas. El analisis de estabilidad del sistema de ecuaciones
diferenciales nos permite examinar como evolucionaran las concentraciones de oxigeno y nu-
trientes a lo largo del tiempo. Para ello, buscamos los puntos de equilibrio del sistema, que
son aquellos donde las tasas de cambio de las variables son cero, es decir, cuando % =0
y %{ = 0. Ademas, podemos explorar la existencia de atractores cadticos o periddicos en el
sistema utilizando técnicas como el mapeo de Poincaré. Este método consiste en seleccionar
una seccion transversal en el espacio de fase del sistema y observar como las trayectorias se
cruzan con esa seccién. Si encontramos trayectorias que no se repiten y llenan de manera
densa el espacio, es posible que el sistema exhiba un comportamiento cadtico. Por otro lado,
si las trayectorias se agrupan en puntos o ciclos, indicaria la presencia de atractores periddicos.

Existen otros métodos que bien podrian ser empleados para abordar el problema de las
oscilaciones en el consumo de oxigeno en un cultivo continuo de levadura bajo limitacién de
nutrientes. Uno de estos métodos es el enfoque basado en matematica discreta [53], el cual se
utiliza para modelar el sistema como una serie de eventos discretos en lugar de una serie de
eventos de evolucién continua en el tiempo. Un método, comtnmente utilizado en este enfoque,
es el modelado mediante redes de Petri [62], [13], 30]. Las redes de Petri son una representa-
cién matematica y grafica que describe la interaccién entre entidades discretas, como lugares
(representando estados) y transiciones (representando eventos o cambios). En el contexto de
las oscilaciones en el consumo de oxigeno, los lugares podrian representar diferentes estados
metabdlicos de la levadura, como la disponibilidad de nutrientes, la produccién de metabolitos
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y el consumo de oxigeno, mientras que las transiciones pueden representar cambios o eventos,
como el suministro de nutrientes o la regulacion de la expresién génica. El modelado mediante
redes de Petri permite capturar la dindmica discreta y los cambios en el sistema a medida que
ocurren los eventos. Se pueden definir reglas y condiciones que gobiernan la transicién de un
estado a otro, lo que permite estudiar como las oscilaciones en el consumo de oxigeno podrian
surgir de las interacciones discretas entre los diferentes componentes del sistema.

Para ilustrar esto, consideremos un ejemplo sencillo, utilizando ecuaciones de redes de
Petri. Supongamos que queremos modelar las oscilaciones en el consumo de oxigeno en un
cultivo de levadura bajo limitacién de glucosa. Podemos representar el estado del sistema con
dos lugares: “Glucosa” y “Oxigeno”, y una transicién llamada “Consumo de Oxigeno”. Las
ecuaciones que describen este sistema podrian ser las siguientes:

dGl a 0 d@ C:E genc
ﬂ k] . (;Zucosa =+ kQ : CO?’I,SUm Z/ no,
d() 1 0 de Cl
M k3 . Ogqu/ge’n,o + k4 : CO’I’LS’LLmO Z/‘g no,

donde k1 y k3 representan las tasas de consumo de glucosa y oxigeno, respectivamente, y ko y
k4 representan las tasas de produccién de glucosa y oxigeno a través del consumo de oxigeno.
La interpretacion grafica la anterior red de Petri se presenta en la figura 2.4.

k2-Consumo

—k1-Glucosa M
de oxigeno

Consumo de
oxigeno

k 4-Consumo
de oxigeno

— k3-Oxigeno

Oxigeno

Figura 2.4: Red de Petri. La red de Petri representa el consumo de oxigeno en un cultivo de
levadura bajo limitacién de glucosa. Los lugares “Glucosa” y “Oxigeno” indican las cantidades
disponibles de ambos compuestos. La transicién “Consumo de Oxigeno” representa el proceso
de consumo. Se consume glucosa y oxigeno (—ki- Glucosa y —ks- Oxigeno) y se produce
glucosa y oxigeno (ko- Consumo de Ozigeno 'y k4 Consumo de Ozigeno) durante el proceso.
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La red de Petri representada en la figura 2.4 describe un sistema de consumo de oxigeno en
un cultivo de levadura bajo limitaciéon de glucosa. El sistema consta de dos lugares: “Glucosa”
y “Oxigeno”, que representan las cantidades de glucosa y oxigeno disponibles en el cultivo,
respectivamente. La transicién “Consumo de Oxigeno” modela el proceso mediante el cual la
levadura consume glucosa y oxigeno. Cuando la transiciéon “Consumo de Oxigeno” se dispara,
se consumen cantidades de glucosa y oxigeno proporcionadas por los arcos con etiquetas “—kj -
Glucosa” y “—ks- Ozigeno”, respectivamente. A su vez, la transicién “Consumo de Oxigeno”
produce glucosa y oxigeno como resultado del proceso de consumo de oxigeno, segin los arcos
con etiquetas “ko- Consumo de Oxigeno” y “ky4- Consumo de Oxigeno”.

La red de Petri de la figura 2.4 permite modelar la dindmica del sistema de consumo de
oxigeno en el cultivo de levadura, considerando la influencia de las tasas de consumo de glu-
cosa y oxigeno, asi como las tasas de produccién de glucosa y oxigeno mediante el consumo de
oxigeno. La simulacién y el analisis de redes de Petri permiten explorar diferentes escenarios
y condiciones experimentales, lo que contribuye a comprender mejor las oscilaciones en el
consumo de oxigeno en un cultivo de levadura bajo limitacion de nutrientes.

El uso de autématas celulares [26, 18] se ha convertido en un método valioso para com-
prender los mecanismos causales de modelos biolégicos. Los autématas celulares son modelos
matemadticos discretos, que nos permiten simular sistemas dinamicos, mediante la divisién del
espacio y el tiempo en unidades discretas. En el contexto especifico de las oscilaciones en el
consumo de oxigeno, los autématas celulares se podrian utilizar para representar el cultivo
de levadura como una matriz bidimensional de células, donde cada célula tiene un estado
que refleja su estado metabdlico y su interaccién con las células vecinas. En un modelo de
automatas celulares, cada célula puede representar diferentes estados metabdlicos relevantes,
como la presencia o ausencia de oxigeno, la concentracién de nutrientes o la producciéon de
metabolitos. Las reglas locales se definen para determinar cémo evoluciona el estado de ca-
da célula en funcién del estado de sus células vecinas. Estas reglas pueden reflejar procesos
biol6gicos o médicos como la difusién de nutrientes o drogas [44], el consumo y la produccién
de oxigeno, la comunicacion entre células y la regulacién génica. La simulaciéon con autéomatas
celulares nos brinda la capacidad de observar como las interacciones locales entre las célu-
las pueden dar lugar a patrones emergentes y oscilaciones en el consumo de oxigeno a nivel
macroscopico. Al variar los parametros del modelo, como las tasas de difusién, las tasas de
consumo y produccién de oxigeno, podemos realizar experimentos virtuales y examinar cémo
estos cambios afectan la dindmica del consumo de oxigeno.

Un ejemplo concreto de un modelo de autématas celulares para el estudio de las oscila-
ciones en el consumo de oxigeno en cultivos de levadura podria ser el siguiente. Supongamos
que representamos el cultivo de levadura en una matriz bidimensional de células, donde cada
célula puede tener uno de dos estados posibles: “Oxigeno presente” o “Oxigeno ausente”. Las
células interacttian con sus células vecinas y su estado evoluciona de acuerdo con ciertas reglas
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locales. Podemos definir una regla que establece que una célula cambiara su estado a “Oxigeno
ausente” si ninguna de sus células vecinas tiene oxigeno presente. Ademads, si una célula tiene
al menos dos células vecinas con oxigeno presente, cambiara su estado a “Oxigeno presente”.
Estas reglas pueden representar un proceso de difusién de oxigeno entre las células y reflejar
la dependencia de la presencia de oxigeno en las células vecinas.

Al simular este modelo de autématas celulares, podemos observar cémo los patrones emer-
gentes y las oscilaciones en el consumo de oxigeno surgirian de las interacciones locales entre
las células. Podriamos analizar como la variacién de los pardametros, como las tasas de difusion
del oxigeno o la densidad inicial de células con oxigeno presente, afectaria la aparicién y la
estabilidad de las oscilaciones.

Ademés del comportamiento en el consumo de oxigeno, los autématas celulares también
nos permitirian explorar otros aspectos del sistema, como la relacién entre la disponibilidad
de nutrientes y las oscilaciones metabdlicas. Podemos extender nuestro modelo de autéomatas
celulares para incluir la concentracion de nutrientes y su influencia en el metabolismo celular.

Supongamos que afiadimos un estado adicional a nuestras células para representar la con-
centracion de nutrientes, por ejemplo, “Bajo” y “Alto”. Ahora, las células no solo interacttian
en funcién de su estado de oxigeno, sino también en funcién de su estado de nutrientes. Pode-
mos establecer reglas que reflejen como la concentracion de nutrientes influye en la produccién
y consumo de oxigeno.

Por ejemplo, podriamos definir una regla que establezca que si una célula tiene un estado
de “Oxigeno presente” y “Bajo” en nutrientes, su estado de nutrientes cambiard a “Alto” y
comenzara a producir oxigeno. Del mismo modo, si una célula tiene un estado de “Oxigeno
ausente” y “Alto” en nutrientes, su estado de nutrientes cambiara a “Bajo” y comenzara a
consumir oxigeno.

El autémata celular se representa como una matriz bidimensional de células, donde cada
célula tiene un estado que puede estar en uno de los siguientes valores:

= O para indicar la ausencia de oxigeno.
= P para indicar la presencia de oxigeno.
= B para indicar un bajo nivel de nutrientes.

» H para indicar un alto nivel de nutrientes.

Definimos la matriz de células como C con tamafio n x m, donde n es el niimero de filas y
m es el nimero de columnas. Cada elemento de la matriz se denota como C};, que representa
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el estado de la célula en la posicién (i, 7).
Las reglas de evolucién de las células se definen de la siguiente manera:

» Si Cj; = O y ninguna de las células vecinas (Cj_1 j, Ciy1,5,Cij—1,Cij+1) tiene oxigeno
presente (P), entonces Cj; cambia a O.

» Si (35 = O y al menos dos células vecinas tienen oxigeno presente (P), entonces Cj;
cambia a P.

= Si 0y = Py Cjj tiene bajo nivel de nutrientes (B), entonces Cj; cambia a H y comienza
a producir oxigeno.

= Si Cyj = Py Cjj tiene alto nivel de nutrientes (H ), entonces C;; cambia a B y comienza
a consumir oxigeno.

Estas reglas reflejan la difusién de oxigeno entre las células y la influencia de la concen-
tracién de nutrientes en la produccién y consumo de oxigeno. Mediante la simulacién de este
automata celular y la variacion de los parametros, como las tasas de difusién y las condiciones
iniciales de oxigeno y nutrientes, podemos estudiar la apariciéon y estabilidad de las oscilacio-
nes metabdlicas en el consumo de oxigeno. Con estas nuevas reglas, podemos explorar cémo la
interaccién entre la disponibilidad de nutrientes y la produccién/consumo de oxigeno influye
en las posibles oscilaciones metabdlicas. Podemos ajustar los pardmetros del modelo, como
la tasa de produccién y consumo de oxigeno en funcién de la concentracion de nutrientes, y
observar como estos cambios afectan a la dindmica resultante.

En cuanto al andlisis de los resultados de las simulaciones de autématas celulares, se
pueden utilizar diversas herramientas visuales para representar los patrones emergentes y
las oscilaciones posiblemente observadas. Una opcién es utilizar graficas de visualizacion en
Python [72], como Matplotlib, para mostrar la evolucién temporal del consumo de oxigeno en
funcién del tiempo simulado (Figura 2.5).
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Paso 0

Figura 2.5: Autémata Celular. El autémata celular simula la evoluciéon de un cultivo en una
matriz bidimensional. Cada celda puede tener cuatro estados: “Ausencia de oxigeno”, “Pre-
sencia de oxigen”, “Alto en nutrientes” y “Bajo en nutrientes”. La imagen muestra como los
estados de las celdas cambian a lo largo del tiempo, siguiendo reglas de actualizacion es-
pecificas. La figura visualiza la dindmica del cultivo y su comportamiento en respuesta a las
condiciones locales.

Para una comprensién més detallada de las oscilaciones y los patrones espaciales, podriamos
utilizar visualizaciones bidimensionales de la matriz de células, donde cada celda se representa
graficamente con diferentes colores o simbolos segtin su estado metabélico y su interacciéon
con las células vecinas. Esto nos permitiria identificar patrones espaciales emergentes y com-
prender mejor la dindmica del sistema.

En conclusion, los autéomatas celulares podrian ser una herramienta valiosa para el estu-
dio de las oscilaciones en el consumo de oxigeno en cultivos de levadura bajo limitacién de
nutrientes. Mediante la simulacién y el analisis de estos modelos, podriamos obtener conoci-
mientos fundamentales sobre los mecanismos subyacentes y explorar cémo diversos factores
influyen en las oscilaciones metabdlicas. Estas investigaciones nos ayudarian a comprender
mejor los sistemas biolégicos y a disefiar estrategias para optimizar el cultivo de levadura y
otros procesos relacionados.

El modelado matematico, aplicado al problema de las oscilaciones en el consumo de oxigeno
en un cultivo continuo de levadura bajo limitacién de nutrientes, se basa en una variedad de
enfoques y herramientas. Estos enfoques incluyen, modelos cinéticos basados en la teoria de
la cinética de crecimiento microbiano, modelos de retroalimentacién que capturan los efectos
de retroalimentacién positiva y negativa entre los componentes del sistema, técnicas de anali-
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sis de estabilidad para investigar las condiciones bajo las cuales se producen las oscilaciones,
técnicas de andlisis no lineal y teoria de sistemas dindmicos y podrian eventualmente incluir
modelos de reaccién-difusion que consideran la difusion de los sustratos y productos metaboli-
cos asi como también el enfoque basado en matemaética discreta utilizando redes de Petri y
el uso de autématas celulares, entre otros. Estas perspectivas proporcionan una comprension
mas profunda de los mecanismos subyacentes de las oscilaciones en el consumo de oxigeno y
permiten explorar como diferentes variables y condiciones experimentales afectan el compor-
tamiento del sistema. Ademads, facilitan la prediccién y el disenio de estrategias para controlar
y regular las oscilaciones en el consumo de oxigeno en cultivos continuos de levadura bajo
limitacién de nutrientes.

2.2. El modelo

El modelamiento matemético de quimiostatos se basa en fundamentos teéricos, que permiten
describir y comprender el comportamiento de los organismos en sistemas de cultivo contro-
lados. Se utilizan ecuaciones y modelos matematicos para representar las interacciones entre
microorganismos, nutrientes y otros factores relevantes.

El principio de conservacién de masa es fundamental en el modelamiento matematico de
quimiostatos. Este principio establece que, la masa total de los componentes presentes en el
sistema se conserva a lo largo del tiempo. Las ecuaciones de balance de masa se derivan a
partir de este principio y describen como varian las concentraciones de los componentes en
funcion de las tasas de crecimiento, consumo y produccién. Por ejemplo, para el nutriente con
concentracién S y el microorganismo con concentraciéon X, las ecuaciones de balance de masa
serfan:

X = crecimiento — salida, (2.4)

S = entrada — salida — consumo.

Estas ecuaciones permiten modelar como varian las concentraciones de los componentes en
funcién de las tasas de entrada, salida, consumo y crecimiento. Al resolver estas ecuaciones,
se puede obtener informacién sobre la dinamica del sistema y cémo se afectan las concentra-
ciones a lo largo del tiempo.

El modelo minimo de quimiostato [29] ha sido desarrollado con el objetivo de proporcionar
una descripcién detallada de lo que ocurre en un cultivo de microorganismos cuando crece
en un bioreactor alimentado de manera continua, manteniendo un volumen constante V' y
condiciones de mezcla perfecta [I1]. En este sistema, todos los nutrientes necesarios para el
crecimiento del cultivo se incorporan en el flujo de entrada F' (volumen por unidad de tiem-
po), pero solo uno de ellos acttia como limitante para el crecimiento, lo que significa que su
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disponibilidad controla la tasa de crecimiento de la biomasa.

El modelo se basa en dos variables de estado principales: la concentracién de biomasa
X y la concentracién del sustrato limitante S. Estas variables representan las cantidades de
biomasa presente en el cultivo y la concentraciéon del sustrato limitante en el medio de culti-
vo, respectivamente. Las ecuaciones de equilibrio del modelo describen cémo estas variables
cambian con el tiempo:

X = (u—d)X, (2.6)
S =d(Sp, — S) — gx. (2.7)

La ecuacién de equilibrio (2.6) se refiere a la tasa de cambio de la concentracién de bio-
masa X. Esta tasa de cambio estd determinada por la diferencia entre la tasa de crecimiento
especifico u v la tasa de dilucién d del cultivo, donde d = g . La tasa de crecimiento especifico
w1 es una medida de la velocidad a la cual la biomasa se acumula en el cultivo, mientras que la
tasa de dilucion d representa la velocidad a la cual el medio de cultivo se retira del sistema.
Si la tasa de crecimiento especifico es mayor que la tasa de dilucién, la biomasa aumentara
con el tiempo.

La ecuacion de equilibrio (2.7) describe la tasa de cambio de la concentracién del sustrato
limitante S. Esta tasa de cambio estd influenciada por varios factores. En primer lugar, la
tasa de dilucién d afecta la concentracién del sustrato limitante, ya que el sustrato se retira
del sistema a una velocidad determinada por esta tasa. Ademés, la entrada de sustrato limi-
tante en el flujo de alimentacion, representada por Sj,, también influye en la concentracién
del sustrato limitante. Por ultimo, la tasa de crecimiento especifico u tiene un efecto en la
concentracién del sustrato limitante, ya que las células en crecimiento consumen el sustrato
para su metabolismo y multiplicacién. El coeficiente de rendimiento de conversién de sustrato
en biomasa Y indica la cantidad de biomasa producida a partir del sustrato consumido.

Las ecuaciones de equilibrio (2.6)-(2.7) permiten describir de manera matematica el com-
portamiento del cultivo en el quimiostato y su interaccién con los nutrientes limitantes y la
biomasa en crecimiento. A través de este modelo, podemos analizar cémo varian las concen-
traciones de biomasa y sustrato limitante en funcion del tiempo y los parametros del sistema.
Esto proporciona informacién importante sobre el crecimiento y la dindmica del cultivo en el
quimiostato, lo que puede ser util para optimizar las condiciones de cultivo y maximizar la
produccién de biomasa o metabolitos de interés.

2.2.1. Supuestos basicos del modelo

Un modelo matematico se funda sobre sus supuestos. La eleccién de los elementos que cons-
tituyen el punto de partida, es un tema central en la construccién de modelos. Este no es el
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lugar para realizar una discusiéon detallada acerca del rol o papel que tienen los supuestos en
un modelo matematico. Nos limitaremos a exponer los supuestos basicos para este modelo,
sin discutir a fondo su pertinencia epistémica. Intentaremos que la pertinencia de estos, para
efectos de la modelizacion del fenémeno de interés, resulte lo mas natural posible. Trataremos,
por tanto, que la justificacion de estos sea exactamente lo contrario a un tour de force. El
primero y méas general de los supuestos es que no carece de valor teérico simplificar de forma
radical la complejidad bioldgica con el objeto de obtener un dibujo simplificado de esta.

El modelo matematico se basa en el esquema de acoplamiento del ciclo metabdlico - ciclo
celular, propuesto por Burnetti et al.[10] descrito y representado en la Figura 1.7 del capitulo
anterior.

Supondremos que las células de levadura admiten dos estados celulares, el estado de com-
promiso y el estado de desarrollo. Supondremos que la poblaciéon de células puede segmentarse
en cualquier instante en dos subpoblaciones suficientemente bien diferenciadas; la subpobla-
ciéon de células que se encuentran en estado de desarrollo y la subpoblacion de las células
que se encuentran en el estado de compromiso. El estado de compromiso lo definiremos co-
mo la fase en que se encuentra una célula que se ha comprometido irremisiblemente con su
progresion en el ciclo de divisién celular, vale decir, corresponde al estado de las células que
en su mayoria responden positivamente al llamado a iniciar divisién celular y por lo tanto
ya han atravesado el punto de restriccién, mas conocido como Start. A la concentraciéon de
biomasa de las células que se encuentran en este estado la denotaremos con la letra C' y a la
concentracién de biomasa del resto de las células, o sea, las que no han pasado por el punto de
restriccién, y que por tanto han sido refractarias a las senales de inicio, la denotaremos con la
letra D. Existe evidencia empirica de la existencia de estos estados [9] y de la importancia e
interés que suscita para el estudio del YMC [46]. La comprensién del acoplamiento YMC-CDC
y en particular el entendimiento de su conexiéon con los estados HOC y LOC podrian verse
robustecidos en virtud de su consideracién. De acuerdo con esto, asumimos que la relacion
de acoplamiento CDC-YMC y en concreto, la hipétesis de que el YMC controla el paso de
las células por el Start [9], podria reconsiderarse sobre el trasfondo del modelo de los estados
celulares de compromiso y desarrollo.

Supondremos también, que la limitacién del crecimiento celular es una funcién bien cono-
cida de la concentracion de los nutrientes glucosa y oxigeno disuelto, de acuerdo a una cinética
del tipo doble Monod [4, [50].

2.2.2. Las ecuaciones de cambio

Siguiendo el modelo minimo de quimiostato [29], definimos ecuaciones de equilibrio para
las variables de estado concentracion de células en estado de compromiso C' , concentracion
de células en estado de desarrollo D | concentracién de glucosa Gy concentracion de oxigeno
disuelto O. Antes de eso definiremos la cinética del crecimiento celular. Supondremos que los
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conjuntos de células C' y D crecen de manera desigual. El ritmo del crecimiento celular para
ambos grupos de células depende tinicamente de las concentraciones de oxigeno y glucosa
presentes en el cultivo. La velocidad de crecimiento tiene un limite que no se puede superar
aunque se incremente de forma arbitraria la concentracién de nutrientes. Este limite superior
de la velocidad especifica de crecimiento es usualmente denotado por pimq.. En este caso las
tasas de crecimiento especifico seran . para las células en estado de desarrollo y viq. para
las células en estado de compromiso. Esto quiere decir que el incremento de la velocidad de
crecimiento especifico disminuye lentamente acercdndose de forma asintética a tmazr ¥ Vinaz
respectivamente . El modelo mas usual que representa este hecho es el creado por Jacques
Monod [50], el afio 1949, no obstante, nosotros usaremos una adaptacién de este modelo para
dos sustratos conocida como doble Monod [4]:

G ) O
Kg, +G Ko, +O

(G, 0) = pmaz( ), (2.8)

donde pimqr €s la tasa especifica de crecimiento méxima para la subpoblacion de células en
estado de desarrollo. Kg,, v Ko, son los valores de saturaciéon media de la glucosa y el
oxigeno disuelto asociados a las células en estado de desarrollo. De forma analoga la funcién
de crecimiento para la subpoblacion de células en estado de compromiso es:

G ) O
Kg, +G Ko, +0

(G, 0) = Vmaa( ), (2.9)

donde v,q; es la tasa especifica de crecimiento maxima para la subpoblacién de células en
estado de compromiso. Kg, y Ko, son los valores de saturacién media de la glucosa y el
oxigeno disuelto asociados a las células en estado de compromiso.

Si supusiéramos que, s6lo hubiesen células en estado de compromiso, entonces la tendencia
a aumentar de C' sélo se veria compensada por la tendencia a disminuir modulada por la tasa
de dilucién d:

C=(v-dcC. (2.10)

Sin embargo, s6lo una fraccién del total de las células se muestran dispuestas a iniciar el
CDC. Por esta razén debemos incluir en el sistema una ecuacién que represente la dindmica
de la fraccion de células refractarias al llamado a iniciar CDC. Si toda la poblacién del cultivo
consistiese solo de células refractarias en estado de desarrollo D , el crecimiento de la poblacion
de células solo se encontraria sujeto a la siguiente ecuacién de cambio:

D= (u—d)D. (2.11)
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Segiin la idea expuesta por Burnetti et al [10},[9] en cada YMC un grupo de células inicia de
forma simultanea CDC llamando a las que se encuentran en una zona de desarrollo préximo
al punto de restriccién Start a comprometerse con el CDC junto a ellas. En consecuencia una
fraccién a de células en desarrollo responden positivamente al llamado a iniciar CDC. Las
ecuaciones de cambio para las concentraciones de células C'y D que representan este hecho
son:

C = (vD —d)C, (2.12)
D = (u—aC —d)D. (2.13)

A fin de modelar la concentracion de la glucosa se debe tener en cuenta que su ecuacién de
cambio, debe poseer dos términos principales que interactian entre si. El primero seria (G, —
G)d y representa la diferencia entre las concentraciones de glucosa entrante G, y saliente G a
una tasa de dilucién d. El segundo término seria —ﬁD — ch C y representaria, en términos
términos generales, el ritmo al cual las células consumen glucosa segtin sus respectivas tasas de
crecimiento y segtin su rendimiento o eficiencia en la conversién masa de glucosa en biomasa:

G=(Gn-Gd-LtpD- e (2.14)
Yo, Ya.

Finalmente, para la ecuaciéon de cambio del oxigeno disuelto en el cultivo, debemos mencio-
nar algunos supuestos importantes. En el modelo no consideraremos explicitamente el papel
que desempena al interior de la vasija el oxigeno presente en el espacio gaseoso. Tampoco
consideraremos de forma explicita el oxigeno disuelto que abandona el cultivo en el efluente,
ni consideraremos el oxigeno disuelto en el medio fresco que entra al bioreactor. Tampoco to-
maremos por separado el oxigeno que entra en forma de aire al sistema. S6lo consideraremos el
efecto final que podrian producir estos factores. Para efectos de este modelo la concentracion
de oxigeno disuelto en el medio liquido siempre tiende a un nivel de saturacién méaximo y la
velocidad con la que este varia depende sélo de su velocidad de transferencia de masa al medio
liquido. Para representar en tales términos la dindmica de la concentracién de oxigeno disuelto
usaremos el modelo de la diferencia entre la velocidad con la que el oxigeno se disuelve en el
medio liquido y la velocidad con la que este es consumido por las células, esto es, la diferencia
entre la tasa de transferencia del oxigeno (OTR) y la tasa de consumo del oxigeno disuelto

(OUR) [10]:

O =O0OTR - OUR .

La OTR esta compuesta por la concentracién de saturacién del oxigeno en el medio liquido
O*, esto es, la concentracién del oxigeno disuelto al cual el sistema se acerca; por la concen-
tracion del oxigeno disuelto en un instante cualquiera O y por el coeficiente de transferencia
de masa del oxigeno k. k(O* — O) representa el ritmo al que varia la concentracién del oxigeno
disuelto en el medio. La tasa de consumo de oxigeno es —(ﬁD—k ﬁ(] ) y representa el ritmo
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al cual las células consumen oxigeno disuelto segtin su velocidad de crecimiento, modulado
por el rendimiento de conversiéon en biomasa del oxigeno disuelto.

Resumiendo, las ecuaciones de cambio de nuestra propuesta para un modelo matemético
de oscilaciones en el consumo de oxigeno en un cultivo continuo de levadura en condiciones
de limitacién de nutrientes, viene dado por:

C = (vD —d)C, (2.15)
D= (4—aC-d)D (2.16)
G = (Gip — Q)d — (YZ D+ Kc*) (2.17)
O = k(0" —0)—(Yg D+KC) (2.18)

2.3. Fundamentos de simulaciéon numérica

2.3.1. Campos de vectores

El campo de vectores asociado al modelo minimo de quimiostato [29] se refiere a la repre-
sentaciéon grafica de las ecuaciones diferenciales en el espacio de las variables de estado, en
este caso, la concentracion de biomasa X y la concentracion del sustrato limitante S. Para
visualizar el campo de vectores [22, 32], se asigna un vector a cada punto del espacio de las
variables de estado, donde la direccién y la magnitud del vector representan la tasa de cambio
de X y S en ese punto. Es decir, en cada punto (X, S) se traza un vector que indica hacia
dénde y con qué velocidad cambiarian las concentraciones de biomasa y sustrato. Usando las
ecuaciones de equilibrio del modelo minimo de quimiostato:

X =(u—d)X, (2.19)

S = d(Sim — S) — %X. (2.20)

Podemos obtener las derivadas X y S en términos de X y S. El campo de vectores se
construye trazando estos vectores en el espacio (X,.S). Para hacerlo, se eligen una serie de
puntos en el espacio (X, S) y se calcula el vector correspondiente a cada punto utilizando las
ecuaciones diferenciales. Por ejemplo, para un punto (X1, 51), se calcula X1 y S; usando las
ecuaciones (1) y (2). Luego, se traza un vector desde el punto (Xi,.57) en la direccién deter-
minada por X; y S, y con una longitud proporcional a la magnitud de estas derivadas. Este
proceso se repite para varios puntos en el espacio de las variables de estado, lo que resulta
en una serie de vectores que representan el campo de vectores asociado al modelo. La densi-
dad de los vectores y su longitud relativa se pueden ajustar para mejorar la visualizacién y
comprensién del campo de vectores [48]. El campo de vectores proporciona informacién visual
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sobre las trayectorias de las soluciones del sistema de ecuaciones diferenciales. Por ejemplo,
muestra cémo las concentraciones de biomasa y sustrato cambiarian en funcién de las condi-
ciones iniciales y los pardmetros del sistema. También revela la existencia de puntos fijos o de
equilibrio, donde las derivadas son cero y los vectores apuntan hacia estos puntos. Analizan-
do el campo de vectores, se pueden identificar caracteristicas importantes del sistema, como
puntos fijos, trayectorias estables o inestables, y regiones donde las concentraciones pueden
crecer o disminuir. Estas observaciones cualitativas del campo de vectores pueden ayudar a
comprender el comportamiento dindmico del modelo minimo de quimiostato y proporcionar
informacién sobre el crecimiento y la interaccion de la biomasa y el sustrato en el sistema.

Campo de vectores del modelo minimo de quimiostato
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Figura 2.6: Campo de vectores del modelo minimo. La direccién, el sentido y la magnitud de
las flechas indican que el aumento en la concentracién de biomasa X, implica una disminucion
de la concentracion de sustrato limitante S.

La grafica de la figura 2.6 muestra el campo de vectores asociado al modelo minimo de
quimiostato. En el eje x se representa la concentraciéon de biomasa X y en el eje y se representa
la concentracion de sustrato limitante S. Cada flecha en el grafico representa un vector que
indica la direccién y magnitud de las derivadas X y S en cada punto del espacio de variables.
El campo de vectores proporciona informacién visual sobre cémo cambian las concentraciones
de biomasa y sustrato en funcién de sus valores iniciales y los parametros del sistema. La
direccién del vector indica el sentido en el cual las concentraciones estan cambiando, mientras
que la longitud del vector representa la velocidad o tasa de cambio en ese punto. En la grafica,
las flechas més largas indican una mayor velocidad de cambio de las concentraciones, mientras

34



que las flechas més cortas representan una tasa de cambio mas lenta. Ademas, la orientacion
de las flechas muestra la direccién del cambio: hacia arriba o hacia abajo en el eje x indica un
aumento o disminucién de la concentracion de biomasa, respectivamente, mientras que hacia
la derecha o hacia la izquierda en el eje y indica un aumento o disminucién de la concentracion
de sustrato, respectivamente.

El campo de vectores puede ayudar a identificar caracteristicas importantes del sistema,
como puntos fijos o de equilibrio, trayectorias estables o inestables, y regiones donde las con-
centraciones pueden aumentar o disminuir. Esto permite comprender mejor el comportamiento
dindmico del modelo y obtener informacién cualitativa sobre la interaccién entre la biomasa y
el sustrato en el sistema de cultivo. En resumen, la grafica del campo de vectores brinda una
representacion visual del modelo minimo de quimiostato, mostrando cémo las concentraciones
de biomasa y sustrato cambian en funcién de sus valores iniciales y los parametros del sistema.

2.3.2. Diagramas de fase

Un diagrama de fases asociado al modelo minimo de quimiostato es una representacién grafica
que muestra las posibles trayectorias y estados de equilibrio del sistema en el espacio de las
variables de estado, es decir, la concentraciéon de biomasa X y la concentracién de sustrato
limitante S [32, 22] 48]. Para construir el diagrama de fases, se considera el comportamiento
de las soluciones del sistema de ecuaciones diferenciales a lo largo del tiempo. Se exploran
las diferentes combinaciones de concentraciones de biomasa y sustrato iniciales, y se estudia
cémo evolucionan estas concentraciones en el tiempo. Las trayectorias en el diagrama de fases
representan las soluciones del sistema de ecuaciones diferenciales y muestran cémo las concen-
traciones de biomasa y sustrato cambian a medida que el tiempo avanza. Cada punto en una
trayectoria corresponde a un estado del sistema en un momento especifico. La forma de las
trayectorias proporciona informacion sobre las dindmicas y los patrones de comportamiento
del sistema. Los puntos fijos o de equilibrio son estados estables en los que las concentraciones
de biomasa y sustrato no cambian con el tiempo. Estos puntos se pueden identificar en el
diagrama de fases como puntos en los que las trayectorias convergen o donde las derivadas
X y S son cero. Los puntos fijos pueden ser atractores, lo que significa que las soluciones
cercanas a ellos convergeran hacia ellos en el tiempo, o pueden ser repulsores, donde las solu-
ciones cercanas se alejaran de ellos. Ademas de las trayectorias y los puntos fijos, el diagrama
de fases también puede incluir regiones que representan diferentes comportamientos del sis-
tema. Por ejemplo, puede haber regiones donde las concentraciones de biomasa y sustrato
crecen indefinidamente, regiones donde las concentraciones disminuyen hacia cero o regiones
donde las concentraciones oscilan periédicamente. El andlisis del diagrama de fases permite
comprender el comportamiento global del sistema y cémo diferentes parametros o condicio-
nes iniciales pueden influir en las trayectorias y los estados de equilibrio. También ayuda a
identificar transiciones cualitativas, como bifurcaciones o cambios en las dindmicas del sistema.
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En resumen, el diagrama de fases asociado al modelo minimo de quimiostato proporciona
una representacion visual de las posibles trayectorias y estados de equilibrio del sistema en el
espacio de las variables de estado. Permite analizar y comprender el comportamiento dindmico
del sistema, incluyendo la existencia de puntos fijos, las dindmicas de las trayectorias y las
regiones de comportamiento especificas (Figura 2.7).

Diagrama de fase del quimiostato

3.5 4
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2.54

Poblacion (X)
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1.5 A

1.0

2 4 6 8 10
Sustrato (S)

Figura 2.7: Diagrama de fases del modelo minimo. El diagrama de fases de X y S muestra
que a medida que aumenta la poblacién X disminuye la concentracion de sustrato S.

2.3.3. Diagramas de bifurcacion

Un diagrama de bifurcacion asociado al modelo minimo de quimiostato es una representacion
grafica que muestra cémo cambian las soluciones del sistema en respuesta a cambios en los
parametros del modelo. En particular, se enfoca en identificar y visualizar las bifurcaciones,
que son cambios cualitativos en las dinamicas del sistema a medida que los pardmetros varian
[32, 22, [48]. En el contexto del modelo minimo de quimiostato, los parametros relevantes pue-
den ser la tasa de crecimiento especifico u, la tasa de dilucion d, la concentraciéon de sustrato
en la entrada S;,, el rendimiento de biomasa respecto al sustrato Y, entre otros. Al modificar
estos parametros, se pueden observar cambios significativos en las trayectorias y los estados
de equilibrio del sistema. El diagrama de bifurcacién muestra como las soluciones del sistema
varian en funcién de un parametro especifico, mientras se mantienen los demas pardmetros
constantes. Para construir el diagrama, se elige un parametro como el eje x y se grafican
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las soluciones correspondientes en el espacio de las variables de estado (por ejemplo, X y S)
en el eje y. El diagrama de bifurcaciéon puede revelar diferentes tipos de bifurcaciones, como
bifurcaciones de equilibrio, bifurcaciones de Hopf, bifurcaciones transcriticas, bifurcaciones de
silla-nodo, entre otras. Cada tipo de bifurcaciéon estéd asociado con cambios especificos en el
comportamiento del sistema. Por ejemplo, una bifurcacién de equilibrio puede ocurrir cuando
un punto de equilibrio cambia de estabilidad. En el diagrama de bifurcacién, se observaria
una rama estable y una rama inestable que se encuentran en un punto critico llamado punto
de bifurcaciéon. Una bifurcacién de Hopf puede ocurrir cuando una solucién periédica emerge
a partir de un punto de equilibrio estable a medida que un parametro varia. En el diagrama
de bifurcacién, se verian regiones donde las trayectorias del sistema son periddicas.

En general, el diagrama de bifurcacion proporciona una representacion visual de como el
comportamiento del sistema cambia cualitativamente a medida que los pardmetros se modifi-
can. Permite identificar puntos criticos, puntos de bifurcacién y transiciones entre diferentes
regimenes dindmicos. También es una herramienta 1til para comprender la estabilidad, las
oscilaciones y otras caracteristicas emergentes del modelo minimo de quimiostato en funciéon
de sus parametros (Figura 2.8):

Diagrama de bifurcacion del modelo minimo de quimiostato
100 4

—— Biomasa (X)
Sustrato (S)

80 +

60

40

Concentracion de equilibrio

20

T T
0.0 0.2 0.4 0.6 0.8 1.0
Dilucién (d)

Figura 2.8: Diagrama de bifurcacion del modelo minimo. El diagrama de bifurcacion del
modelo minimo muestra como las concentraciones de equilibrio de X y S varfan en funcién
de la variacion del parametro de dilucién d. Cuando d crece observa que la concentracién de
equilibrio para S disminuye.
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2.3.4. Diagrama de retorno

Un diagrama de retorno, también conocido como diagrama de retardo o diagrama de tiempo
retrasado o grafica de Poincaré [22] es una herramienta que se utiliza para visualizar la relacién
entre una variable de interés y su propio valor en un instante anterior o posterior en el tiempo.
En el contexto del modelo minimo de quimiostato, podemos construir un diagrama de retorno
para la variable de interés, ya sea la concentracién de biomasa X o la concentracién de
sustrato S. Para ilustrar esto, consideremos el caso de construir un diagrama de retorno para
la concentracién de biomasa X adelantada una unidad de tiempo. Las ecuaciones diferenciales
del modelo minimo de quimiostato son:

X = (u—-d)X, (2.21)
S =d(Sm—8) — %X. (2.22)

Si queremos construir un diagrama de retorno para X adelantada una unidad de tiempo,
podriamos utilizar la siguiente relacion:

X(t+1)=X(t)+At- X(t). (2.23)

donde X (¢ + 1) representa el valor de X en el tiempo ¢t + 1, X (¢) representa el valor de X en
el tiempo ¢, At es el paso de tiempo y X(¢) es la tasa de cambio de X en el tiempo t. Para
construir el diagrama de retorno, podemos seguir estos pasos:

1. Inicializar un arreglo vacio para almacenar los valores de X en diferentes instantes de
tiempo.

2. Elegir un valor inicial para X, por ejemplo, Xy = 1,0.

3. Para cada instante de tiempo ¢, calcular el valor de X adelantado una unidad de tiempo
utilizando la relacién mencionada anteriormente.

4. Almacenar el valor calculado de X en el arreglo.

5. Repetir los pasos 3 y 4 para diferentes instantes de tiempo.

Una vez que se hayan calculado los valores de X para diferentes instantes de tiempo,
se pueden graficar en un diagrama de retorno, donde el eje x representa el valor actual de
X y el eje y representa el valor de X adelantado una unidad de tiempo. El diagrama de
retorno puede revelar patrones y comportamientos interesantes en la dindmica del sistema.
Por ejemplo, se pueden observar perturbaciones, ciclos limite, atracciones hacia puntos fijos o
comportamientos cadticos segun la relacién entre los valores actuales y futuros de la variable
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de interés. Es importante tener en cuenta que el paso de tiempo At utilizado en el calculo
de X adelantado una unidad de tiempo puede influir en la precisién y la apariencia del dia-
grama de retorno. Un paso de tiempo demasiado grande puede ocultar detalles finos en el
comportamiento dindmico del sistema, mientras que un paso de tiempo demasiado pequefio
puede llevar a un mayor costo computacional. En resumen, un diagrama de retorno es una
herramienta util para explorar la relacién entre una variable de interés y su valor adelantado
o atrasado en el tiempo. En el contexto del modelo minimo de quimiostato, podemos utilizar
un diagrama de retorno para analizar la dindmica de la concentracién de biomasa o sustrato
en funcién de sus valores en instantes de tiempo anteriores o posteriores (Figura 2.9).

Diagrama de Retorno de la Variable de Estado X
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Figura 2.9: Diagrama de retorno. El alineamiento parejo a la linea de identidad y la regularidad
en la distancia entre los puntos, indica un posible comportamiento periédico de X.
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2.3.5. Soluciones numéricas

El método de Adams-Bashforth-Moulton [I4] es un método numérico utilizado para aproxi-
mar las soluciones de ecuaciones diferenciales ordinarias. Es especialmente ttil para resolver
ecuaciones diferenciales que no tienen soluciones analiticas exactas o cuando no es factible en-
contrarlas. En el contexto del modelo minimo de quimiostato, las ecuaciones diferenciales que
describen la dindmica de las variables de estado (concentracién de biomasa X y concentracién
de sustrato S) son:

X = (u—d)X, (2.24)

S = d(Sim — S) — %X. (2.25)

El objetivo es encontrar las soluciones numéricas de estas ecuaciones diferenciales utili-

zando el método de Adams-Bashforth-Moulton. El método se basa en la aproximacién de la

derivada de la variable de estado utilizando diferencias finitas hacia atras y hacia adelante en

el tiempo. El método de Adams-Bashforth-Moulton se aplica en pasos de tiempo discretos.
Dado un paso de tiempo h, las soluciones numéricas se calculan de la siguiente manera:

= Inicializacién: Se conocen los valores iniciales de las variables de estado, es decir, Xg y
So-

» Paso de Adams-Bashforth: Utilizando el método de Adams-Bashforth, se calcula una
aproximacién de las variables de estado en el siguiente paso de tiempo (t;11). Para
hacer esto, se utiliza la informacién de los pasos de tiempo anteriores (t;,t;—1,...) y las
aproximaciones previas de las variables de estado. Por ejemplo, para X, la aproximacién
en el siguiente paso de tiempo se calcula como:

AB h

XD =X+ 5 Bl = di) X — (pi-1 = di-1)Xi-1). (2.26)

= Paso de Adams-Moulton: Utilizando el método de Adams-Moulton, se mejora la apro-
ximacién obtenida en el paso anterior. Para esto, se utiliza la informacién adicional del
paso de tiempo actual (¢;41) y se corrige la aproximacién de las variables de estado. Por
ejemplo, para X, la correcciéon en el siguiente paso de tiempo se calcula como:

h A
Xirn =Xi+ 5 ((Nz‘+1 —dip ) X+ (i - di)Xi> : (2.27)

= Repetir los pasos 2 y 3 para avanzar en el tiempo hasta alcanzar el instante final deseado.

Es importante destacar que el método de Adams-Bashforth-Moulton requiere conocer los
valores de las tasas de crecimiento especifico u y las tasas de diluciéon d en cada paso de
tiempo. Estos valores pueden ser constantes o depender de otras variables o condiciones del
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sistema. Ademas, la eleccién del paso de tiempo h influye en la precisién y estabilidad del
método, siendo necesario encontrar una eleccién adecuada para obtener resultados precisos y
estables.

FEl método de Adams-Bashforth-Moulton es un método de paso multiple, lo que significa
que utiliza informacién de multiples pasos anteriores para calcular las soluciones numeéricas en
cada paso de tiempo. Esto proporciona una aproximacion mas precisa en comparacién con los
métodos de paso tnico, como el método de Euler. Al aplicar el método de Adams-Bashforth-
Moulton a las ecuaciones diferenciales del modelo minimo de quimiostato, se obtendran so-
luciones numéricas que representan la evolucién de las variables de estado (concentracién
de biomasa y concentracién de sustrato) en el tiempo. Estas soluciones permiten visualizar
cémo varian las variables en funcién del tiempo y pueden proporcionar informacién sobre el
comportamiento del sistema. Es importante destacar que las soluciones numéricas obtenidas
mediante el método de Adams-Bashforth-Moulton son aproximaciones y no representan las
soluciones exactas de las ecuaciones diferenciales. La precisiéon de las soluciones dependera
de la eleccion adecuada de los parametros del método, como el paso de tiempo y el orden
del método utilizado. Ademas, es fundamental tener en cuenta las condiciones iniciales y los
valores de los parametros del sistema al aplicar el método de Adams-Bashforth-Moulton. Pe-
quenas variaciones en estos valores pueden tener un impacto significativo en las soluciones
numéricas obtenidas (Figura 2.10).

Soluciones numéricas del sistema quimiostato (Adams-Bashforth-Moulton)

10 4 «  Poblacién (X)
Sustrato (S)

Valor

Tiempo

Figura 2.10: Soluciones numéricas. La grafica muestra la evolucién de la poblacién microbiana
X y la concentracion de sustrato S a lo largo del tiempo. Se utilizan pasos de predicciéon y
correccién para obtener las soluciones numéricas con el método Adams-Bashforth-Moulton,
que se representan como puntos en la grafica. Esto nos permite visualizar como cambian X y
S en funcién del tiempo y comprender mejor la dindmica del sistema quimiostato.
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2.3.6. Optimizacién de parametros

Tras un detallado estudio de la variacién de parametros y el andlisis de los diagramas de
fase para identificar patrones oscilatorios en el sistema dindmico en cuestién, se da paso a
una etapa crucial: la optimizacién de los parametros. Para abordar este desafio, se utilizara
el método de algoritmos genéticos, una poderosa técnica inspirada en la evolucién bioldgica
que permite encontrar conjuntos éptimos de parametros para maximizar la probabilidad de
producir oscilaciones en la variable de interés. Los algoritmos genéticos aplican principios de
seleccidon natural, cruce y mutacién para buscar soluciones éptimas en espacios de busqueda
complejos y multidimensionales. Esta metodologia ha demostrado su eficacia en una amplia
gama de problemas de optimizacién y se espera que proporcione una herramienta poderosa
para la optimizaciéon de pardmetros en el presente estudio.

Algoritmos genéticos

Los algoritmos genéticos son métodos computacionales de biisqueda y optimizacion basados
en los principios de la evolucién biolégica y la genética [23]. Son utilizados para resolver
problemas complejos que involucran la optimizacién de una funcién objetivo, la seleccién de
conjuntos de pardmetros o la exploracion de espacios de busqueda amplios.[33] Estos algorit-
mos se inspiran en la teoria de la evolucién de Charles Darwin y en los mecanismos genéticos
de herencia y seleccién natural.

Un algoritmo genético simula la evoluciéon de una poblacién de soluciones candidatas a lo
largo de multiples generaciones. Cada solucion candidata, también conocida como individuo,
estd representada por un conjunto de genes o cromosomas, que codifican la informacién nece-
saria para definir una solucién al problema en cuestién. Estos genes pueden ser tratados como
valores numéricos, cadenas de bits u otras representaciones segin el tipo de problema.

Durante el proceso evolutivo, los algoritmos genéticos aplican operadores genéticos como
la seleccion, el cruce (crossover) y la mutacién para generar nuevas soluciones en cada ge-
neracién. La seleccién favorece a los individuos mas aptos, es decir, aquellos que presentan
una mejor calidad o valor objetivo. El cruce combina los genes de dos individuos para crear
descendientes con caracteristicas heredadas de sus padres. La mutacion introduce cambios
aleatorios en los genes de los individuos para fomentar la exploracién del espacio de btisqueda.

A medida que progresa el algoritmo, la poblacién evoluciona y converge hacia soluciones
mas Optimas en términos de la funcién objetivo. Esto se logra mediante la reproduccion di-
ferencial de los individuos, donde los mejores individuos tienen una mayor probabilidad de
ser seleccionados como padres y transmitir sus caracteristicas favorables a las generaciones
futuras. La evolucion se repite durante un ntimero predeterminado de generaciones o hasta
que se cumpla un criterio de convergencia.
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Los algoritmos genéticos han demostrado su eficacia en una amplia gama de problemas
complejos, como la optimizacién de funciones matemaéticas, el diseno de circuitos, la planifica-
cion de tareas, la optimizacién de rutas, entre otros [33]. Ademds, ofrecen ventajas en términos
de robustez, capacidad de exploracién y capacidad para encontrar soluciones cercanas al 6pti-
mo global en problemas multidimensionales o con miultiples éptimos locales.

En la implementacion especifica de este algoritmo genético, se utilizaron las siguientes
librerias y funciones especificas:

= Random: Se utilizé para generar nimeros aleatorios en la generacién de la poblaciéon

inicial y en la mutacién de los individuos.

= Numpy: Se empled para realizar cdlculos numéricos, como la creaciéon de un vector de

tiempo y la manipulacién de matrices.

= Scipy.integrate.odeint: Se import6 la funcién odeint de la sublibreria Integrate de Scipy.

Esta funcién fue utilizada para resolver el sistema de ecuaciones diferenciales.

A continuacién describimos el proceso de implementacién del algoritmo genético en Python
[72], adaptado para la optimizacién de pardmetros de nuestro modelo:

1.

Definicién de la funcién de aptitud (fitness): Se usan las ecuaciones de nuestro modelo y
los valores iniciales de sus pardmetros para definir una funcién que evalta la probabilidad
de oscilacién en la variable O. Los parametros del sistema son pasados como entrada a
esta funcion.

. Inicializacién de la poblacion (init_population): Se definieron los rangos dentro de los

cuales se generaran los individuos de la poblacién inicial. Cada individuo representa un
conjunto de parametros aleatorios dentro de estos rangos.

. Seleccién de padres (select_parents): Se utiliz6 la funcién de aptitud para evaluar la

calidad de cada individuo en la poblacién actual. Los individuos con mayor aptitud
tienen una mayor probabilidad de ser seleccionados como padres para la siguiente gene-
racién. La informacion entregada por el sistema dindmico y los valores iniciales de los
parametros influyen en la evaluacion de la aptitud de cada individuo.

. Cruce de padres (crossover): Se utilizaron las combinaciones de valores de los pardmetros

heredados de los padres para generar dos descendientes.

. Mutacién de individuos (mutate): Se introdujeron cambios aleatorios en los valores de

los parametros de un individuo. Los valores iniciales de los parametros del sistema y
la informacién que entrega el sistema dindmico definen los rangos permitidos para la
mutacion.
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6. Optimizacién de pardmetros (optimize_parameters): Se usé la funcién de aptitud para
evaluar la calidad de cada individuo en cada generacion. El objetivo es encontrar el
conjunto de pardmetros que maximice la probabilidad de oscilacién en la variable O
del sistema, utilizando la informacién entregada por el sistema dindmico y los valores
iniciales de los parametros.

7. Obtencion de los parametros éptimos: Al finalizar la ejecucién del algoritmo genético, se
devuelve el individuo con la mejor aptitud encontrado durante todas las generaciones, es
decir, el conjunto de parametros éptimos. Estos pardametros se imprimen en la pantalla
para su visualizacién.

En resumen, el proceso inicia con la fase de inicializacién en la que se definen y asignan
valores a los pardmetros iniciales. A continuacién, se procede a la evaluacion de individuos en
la poblacién mediante la funcién de aptitud. La decisién sobre la mejor aptitud condiciona
la selecciéon de individuos para el cruce. Durante la fase de cruce, se generan descendientes
combinando los valores de los pardametros de los padres seleccionados. Posteriormente, se lleva
a cabo la fase de reemplazo, donde los nuevos individuos reemplazan a los antiguos en la
poblacién. Este ciclo se repite hasta que se cumple la condicién de finalizacién, momento en
el cual se obtienen los parametros 6éptimos y concluye el algoritmo. Por lo tanto, en este caso
particular, la implementacién especifica del algoritmo genético consistié en definir funciones
para calcular la aptitud de los individuos, inicializar la poblacién, seleccionar padres, realizar el
cruce y la mutacién, y encontrar los parametros 6ptimos mediante la optimizacién de la aptitud
a lo largo de muiiltiples generaciones. Los rangos de los pardmetros y los valores especificos
del algoritmo genético fueron configurados previamente. Al final del proceso, se obtuvieron
los pardametros éptimos que maximizaron la probabilidad de oscilacién en el pardmetro O. A
continuacién se puede ver un diagrama de flujo del proceso de depuracién de parametros:
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Figura 2.11: Diagrama de flujo del algoritmo genético que fue usado en la depuraciéon de los
parametros de nuestro modelo.
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2.3.7. Concordancia con los datos experimentales

En esta etapa del estudio, se llevé a cabo un ajuste de curva utilizando un algoritmo de mi-
nimizacion del error cuadratico medio en relacién a la curva de datos experimentales. Este
proceso tiene como objetivo encontrar una mejor correspondencia entre la curva tedrica gene-
rada por el modelo equipado de los parametros generados y los datos experimentales obtenidos
de la literatura [10} 9.

Para realizar el ajuste de curva, se utilizaron técnicas de optimizacién numérica que permi-
tieron ajustar los parametros y coeficientes del modelo para minimizar la diferencia cuadratica
entre la curva tedrica y los datos experimentales [61]. Esto se realizé mediante la comparacién
de los valores calculados por el modelo con los datos experimentales, ajustando los pardmetros
del modelo de manera iterativa hasta alcanzar el mejor ajuste posible.

El algoritmo de minimizaciéon del error cuadratico medio buscé los valores 6ptimos de
los pardametros y coeficientes del modelo que minimicen la diferencia entre la curva tedrica y
los datos experimentales. Esto permitiria obtener una curva ajustada que se acerque lo mas
posible a los datos reales, lo cual proporcionaria una representacién mas precisa del compor-
tamiento del sistema.

Es importante destacar que el ajuste de curva se realizar6 en conjunto con las simulaciones
numéricas y la optimizaciéon previamente descritas. El ajuste de curva permitiria mejorar atin
mas, la concordancia entre el modelo y los datos experimentales, proporcionando una valida-
cién adicional al estudio y una mejor adaptaciéon del modelo a las oscilaciones en el consumo
de oxigeno observadas en un cultivo continuo de levadura en condiciones de limitaciéon de
nutrientes.

Ajuste de curva

El ajuste de curva a datos experimentales es un proceso fundamental en la ciencia y la in-
genieria que busca encontrar una funcién matematica que se ajuste de manera éptima a un
conjunto de datos obtenidos mediante experimentos. Este proceso es de gran importancia
para extraer informacién significativa de los datos y comprender la relacién entre las variables
involucradas en el fenémeno estudiado. Los aspectos matematicos involucrados en el ajuste de
curva se basan en la minimizaciéon de la diferencia entre los valores predichos por el modelo y
los datos experimentales [61].

Una técnica cominmente utilizada en el ajuste de curva es el método de minimos cuadra-
dos. Este método se basa en minimizar la suma de los errores al cuadrado entre los valores
observados y los valores predichos por el modelo. Dado un conjunto de datos experimentales
(zi,yi)iy, donde z; es la variable independiente y y; es la variable dependiente, se busca
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encontrar los parametros y coeficientes de un modelo matematico f(x;#) que minimicen la
siguiente funcién objetivo:

n

S0) = (yi — f(xi:6))?,

i=1

donde 6 representa los parametros y coeficientes del modelo que se ajustan a los datos. La
minimizaciéon de S(€) se puede lograr mediante técnicas de optimizacién numérica que bus-
can encontrar los valores 6ptimos de 6 que minimicen la diferencia cuadratica entre la curva
tedrica y los datos experimentales.

Existen diferentes enfoques para realizar el ajuste de curva, como el ajuste lineal, el ajuste
polinomial, el ajuste de curvas no lineales, entre otros [6]. Cada enfoque tiene sus propias
caracteristicas y suposiciones, y la elecciéon del método adecuado depende del problema es-
pecifico y de las caracteristicas de los datos experimentales.

El ajuste de curvas no lineales puede presentar desafios adicionales en comparacién con el
ajuste lineal, ya que las soluciones pueden no ser tnicas y el proceso de optimizacién puede
requerir inicializaciones adecuadas y consideraciones adicionales. Por lo tanto, es importan-
te contar con métodos robustos y herramientas computacionales adecuadas para realizar el
ajuste de curvas no lineales de manera precisa y eficiente.

2.4. Estudios previos

Una de las técnicas de modelamiento mateméatico mas ampliamente utilizada en los estudios
considerados es el esquema estructurado segregado. Este enfoque se emplea para analizar
sistemas complejos divididos en subcomponentes o compartimentos. Cada subcomponente
se modela por separado, teniendo en cuenta las interacciones entre ellos. Por ejemplo, en el
estudio realizado por Porro et al.[60], se investigaron las oscilaciones sostenidas observadas
en cultivos continuos de Saccharomyces cerevisiae. Estas oscilaciones se producen dentro de
un rango bien definido de tasas de dilucién y valores de oxigeno disuelto. El periodo de las
oscilaciones esté relacionado con los tiempos de generacién de las células madre y las células
hijas. Se propuso un modelo que explicaba el surgimiento de estas oscilaciones, a partir de
los cambios en los parametros del ciclo celular, debido al crecimiento alternativo de células
madres e hijas en glucosa y etanol.

Otra técnica empleada es, el modelamiento via sistemas de ecuaciones diferenciales. Caz-
zador et al. [I2] propusieron un modelo matematico basado en ecuaciones diferenciales que
describian las interacciones entre las diferentes especies quimicas y bioldgicas presentes en el
cultivo de levadura. A través de simulaciones numéricas y andlisis tedricos, examinaron cémo
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las interacciones entre las especies y los procesos bioquimicos podrian dar lugar a oscilacio-
nes en el cultivo. Se identificaron varios mecanismos potenciales, como la retroalimentacion
positiva y negativa, que podrian desempenar un papel en la generacién de las oscilaciones
observadas. Se usa una versién modificada del modelo clasico de quimostato de Monod, para
relacionar el comportamiento de una sola célula con las oscilaciones observadas experimental-
mente. En este modelo, se consideran dos fases principales o estados de la célula, para tener en
cuenta los cambios observados experimentalmente en el crecimiento celular: la fase de brota-
cién y la fase de no brotaciéon. En este estudio, se consideran supuestos simples adicionados al
modelo con el objetivo de obtener informacién practica y manejable sobre las relaciones entre
las modificaciones metabdlicas durante el ciclo celular, el control de la division y la ocurrencia
de las oscilaciones. Se toma en cuenta, el metabolismo celular asumiendo una diversificacion
en el coeficiente de rendimiento durante el ciclo celular. Ademads, en el rango oscilatorio, se
supone que la masa celular es constante, en el momento de la formacién de una nueva célula
(budding) y que depende de la concentracion del sustrato limitante en el momento de la divi-
sién. Al variar los valores de los pardmetros en un rango adecuado, se obtuvieron oscilaciones
sostenidas, que pueden ser comparadas con las oscilaciones experimentales observadas.

El analisis tedrico basado en sistemas de ecuaciones diferenciales se encuentra presente
con el trabajo de Cazzador [I1], en el que se utiliza una versién modificada del modelo clésico
de quimostato de Monod, para relacionar el comportamiento de una sola célula con las osci-
laciones observadas experimentalmente. En este modelo, se consideran dos fases principales
o estados de la célula para tener en cuenta los cambios observados experimentalmente en el
crecimiento celular: la fase de brotacion y la fase de no brotacién. Para ello, se asigna una
especie de estructura de dos compartimentos a la biomasa total. El modelo obtenido permite
analizar las propiedades locales de los estados estacionarios predichos bajo varias suposiciones,
tanto en los coeficientes de rendimiento como en las tasas de crecimiento especificas. Se deri-
van las condiciones necesarias para la inestabilidad local y se muestra la existencia de ciclos
limite estables mediante simulaciéon por computadora. En cuanto a los cambios cualitativos
en los parametros metabdlicos, este analisis concuerda con los resultados obtenidos median-
te la simulacién de modelos complejos estructurados y segregados. Sin embargo, el periodo
de oscilacion es demasiado largo en comparaciéon con el experimental, lo que puede deberse
principalmente a las suposiciones simplificadoras sobre la evolucién dindamica de las tasas de
transferencia entre los dos compartimentos. Hasta ahora, la utilidad del modelo parece estar
restringida a la identificacién de las relaciones entre la regulacion del ciclo celular y el desen-
cadenante de la oscilacion.

Continuando con las técnicas de modelamiento matematico en el campo de las oscilaciones
en cultivos continuos de levadura, cabe mencionar el trabajo de Bellgardt y sus colaborado-
res [7]. En este trabajo se exploré la presencia de bifurcaciones y oscilaciones en los cultivos
continuos de levadura. El objetivo principal del estudio fue comprender las condiciones bajo
las cuales los cultivos continuos de levadura pueden exhibir comportamientos bifurcativos, es
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decir, la capacidad de cambiar entre diferentes estados estables, y oscilaciones peridédicas. En
su investigacion se utilizdé un enfoque experimental, similar al utilizado por Cazzador et al.
[12], realizando cultivos continuos de levadura y monitoreando las variables clave. Sin embar-
go, Bellgardt se centré especificamente en investigar la respuesta de los cultivos a cambios en
la tasa de dilucién y en la disponibilidad de oxigeno. A través del andlisis de los datos ex-
perimentales, Bellgardt encontré evidencia de comportamientos bifurcativos y oscilaciones en
los cultivos continuos de levadura. Estos fenémenos fueron especialmente notables, cuando se
alteraron las condiciones de cultivo, como cambios en la tasa de dilucién o en la concentraciéon
de oxigeno. Para comprender los mecanismos subyacentes a estas observaciones, Bellgardt
también desarrolld modelos matematicos que describian la dindmica de los cultivos de levadu-
ra. Estos modelos consideraban factores como, la cinética de crecimiento, la produccién y el
consumo de metabolitos, y las interacciones entre las diferentes especies quimicas presentes.
A través de simulaciones numéricas y anélisis tedricos, Bellgardt demostré cémo la combina-
cién de factores como la retroalimentacion positiva y negativa, y los cambios en las tasas de
reaccién, podian dar lugar a bifurcaciones y oscilaciones en los cultivos continuos de levadura.

En conclusion, el estudio de Bellgardt en 1997 proporcioné una comprension mas profunda
de los fenémenos bifurcativos y las oscilaciones en los cultivos continuos de levadura. Mediante
un enfoque experimental y matematico, el autor investigo las condiciones que pueden llevar a
estos comportamientos y desarrollé modelos para explicar los mecanismos subyacentes. Este
trabajo, ha contribuido significativamente al campo de la dindmica de los cultivos de levadura
v ha sentado las bases para investigaciones posteriores en esta area.

Otra técnica usada, es el enfoque cibernético, que utiliza la teoria de control y sistemas de
retroalimentaciéon para modelar y analizar sistemas complejos. El modelo cibernético es una
metodologia que permite simular la competencia dindmica entre diferentes vias metabdlicas
disponibles en un sistema biolégico. En este caso, el modelo cibernético se utiliza para estudiar
la dindmica de crecimiento de Saccharomyces cerevisiae en cultivos por lotes y continuos. En
el estudio de Jones et al. [35], se aplic6 un modelo cibernético para simular la competencia
dindmica entre diferentes vias metabdlicas en cultivos de levadura. En los cultivos por lotes,
se observé el patrén diauxico, donde la glucosa es fermentada completamente a etanol, du-
rante la primera fase de crecimiento exponencial, seguida de una fase de latencia intermedia y
una segunda fase de crecimiento exponencial que consume etanol. En los cultivos continuos, a
diferentes tasas de dilucién, se observaron oscilaciones sostenidas en todas las concentraciones
medidas, como la masa celular, glucosa, etanol y oxigeno disuelto, asi como en la cantidad
de carbohidratos de almacenamiento intracelular, como glucégeno y trehalosa, la fraccién de
células en yema y el pH del cultivo. El modelo cibernético utilizado en este estudio es es-
tructurado y no segregado, lo que significa que tiene en cuenta todas las vias metabdlicas
disponibles y su competencia dindmica. Este modelo logré predecir con precisién todos los
aspectos observados experimentalmente, como la duracién de la fase de latencia intermedia,
la produccién y consumo secuencial de etanol en los cultivos por lotes, asi como la generacion
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espontanea de oscilaciones y las variaciones en el periodo y amplitud de las oscilaciones en los
cultivos continuos, cuando se modifican la tasa de dilucién o la velocidad de agitacién.

En el trabajo de Boczko y colaboradores [§], se emplean diferentes técnicas de modelamien-
to matematico para investigar la dindmica del ciclo celular y el agrupamiento en levaduras.
El objetivo principal es proporcionar una explicaciéon para las oscilaciones periddicas en el
consumo de oxigeno observadas en poblaciones de levadura. En el estudio, se desarrollan mo-
delos de ecuaciones diferenciales ordinarias (ODE, por sus siglas en inglés) del ciclo celular.
Estos modelos consideran tanto retroalimentaciones de crecimiento positivas, como negati-
vas dentro del ciclo celular. Se presentan pruebas rigurosas y simulaciones que demuestran
que estas retroalimentaciones pueden generar agrupamientos o ¢lustering”de las poblaciones
dentro del ciclo celular. Los modelos son analizados, tanto para perturbaciones aleatorias co-
mo estocasticas. Ademas de los modelos basados en ODE, también se emplean modelos de
ecuaciones diferenciales estocédsticas (SDE, por sus siglas en inglés) y modelos de ecuaciones
diferenciales aleatorias (RDE, por sus siglas en inglés) para abordar la dindmica y el agru-
pamiento en el ciclo celular de levaduras. Los resultados obtenidos en el estudio indican que
el fenémeno de agrupamiento o clustering es robusto y es probable que se observe en la na-
turaleza. Dado que el agrupamiento implica un ntimero entero de conjuntos, esto lleva a un
comportamiento periédico con periodos que son casi divisores enteros del periodo del ciclo
celular.

El estudio de Morgan et al. [51] traté sobre un modelo dindmico de los ciclos celulares
en un gran cultivo de células de levadura. Este modelo incorporé puertas de control del ciclo
celular y cambios en el modo metabdlico que son activados por umbrales de recursos. Para
analizar el modelo, se emplearon técnicas de analisis matematico y simulaciones numéricas. En
primer lugar, se realizd un estudio analitico para demostrar la existencia de conjuntos abier-
tos de valores de parametros, para los cuales el modelo posee soluciones periddicas estables
que exhiben oscilaciones metabdlicas con agrupamiento del ciclo celular. Este andalisis pro-
porciond una base tedrica para comprender las posibles causas de las oscilaciones observadas
en los experimentos. Ademaés del estudio analitico, se realizaron simulaciones numéricas del
modelo para obtener evidencia adicional. Estas simulaciones demostraron que las soluciones
periddicas estables, que representan las oscilaciones metabdlicas y el agrupamiento temporal
de las células, existen para conjuntos amplios de valores de pardmetros. Estas simulaciones
brindaron una confirmacién numérica de los resultados teéricos y respaldaron la idea de que
las puertas de control del ciclo celular junto con recursos criticos pueden ser un mecanismo
robusto para producir los fenémenos observados experimentalmente.

Finalmente, Stowers et al. [67], emplearon diversas técnicas de modelamiento mateméti-
co para investigar la estructura de las poblaciones de levadura de brote en respuesta a un
mecanismo de retroalimentacién. Los investigadores utilizaron un enfoque teérico para com-
prender cémo este mecanismo de retroalimentacién, basado en la comunicacion entre células,
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acopla el crecimiento y la divisiéon celular, lo que da como resultado densidades de poblaciéon
no estacionarias y multimodales. Para estudiar la progresion del ciclo celular de los conjuntos
de células en respuesta a este mecanismo, se realizaron simulaciones numéricas. Estas simula-
ciones permitieron modelar y analizar como las oscilaciones en la estructura de la poblacion
de la levadura en brote se reflejan en cambios observables en variables ambientales, como
el oxigeno disuelto. Mediante estas simulaciones, los investigadores pudieron explorar dife-
rentes escenarios y evaluar los resultados obtenidos. Ademaés de las simulaciones numéricas,
se presentaron datos experimentales que respaldan el modelo propuesto. Estos datos fueron
obtenidos a partir de experimentos en los que se monitorea la dindmica de las poblaciones de
levadura de brote en condiciones especificas. La comparacion entre los datos experimentales
v los resultados de las simulaciones numeéricas y el andlisis tedrico permitié validar el modelo
propuesto y fortalecer las conclusiones del estudio.

En conclusién, las técnicas de modelamiento matematico empleadas en las investigacio-
nes descritas incluyen el esquema estructurado segregado, el modelamiento via sistemas de
ecuaciones diferenciales, el enfoque cibernético y diversas técnicas de analisis tedrico y simula-
ciones numéricas. Estas técnicas permitieron comprender mejor la dindmica de los cultivos de
levadura, y explicar fendmenos observados experimentalmente, como las oscilaciones en el cre-
cimiento celular, el consumo de nutrientes y la competencia entre diferentes vias metabdlicas.
Los modelos matematicos desarrollados proporcionan una base tedrica sélida para investi-
gar las interacciones y los mecanismos subyacentes en estos sistemas y permiten predecir y
analizar el comportamiento de las poblaciones celulares en diferentes condiciones. Ademdés,
la comparaciéon entre los resultados de las simulaciones numéricas y los datos experimentales
valida y fortalece los modelos propuestos. En general, estas técnicas de modelamiento ma-
tematico son herramientas poderosas para la investigacién en biologia y contribuyen a una
mejor comprension de los sistemas biolégicos complejos.

2.5. ;Doénde estamos ahora?

De acuerdo con investigaciones previas, el estudio de las oscilaciones en el consumo de
oxigeno de la levadura en cultivos continuos y bajo condiciones de limitaciéon de nutrientes,
continta siendo un campo con posibles lineas de investigacién a desarrollar. A pesar de los
avances realizados en esta area, han surgido nuevas preguntas y aspectos por explorar [46].
Concretamente, elaborar un modelo segregado estructurado basado en nuevas investigaciones
[9, 21], podria mejorar la comprensién del fenémeno de las oscilaciones en el consumo de
oxigeno en cultivos continuos de levadura con limitacién de nutrientes, relacionando ciclo
celular (CDC) con ciclo metabdlico de la levadura (YMC).
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Capitulo 3

Metodologia

3.1. ;Coémo se realizo la biisqueda y validaciéon de parametros?

En general, las dindmicas asociadas a este modelo pueden variar dependiendo de los valores
especificos de los coeficientes y las condiciones iniciales. Las variables de estado pueden in-
teractuar y afectarse mutuamente, lo que da lugar a diferentes comportamientos dindmicos.
Algunas de las posibles dindmicas incluyen:

= Estabilidad: Si los coeficientes y las condiciones iniciales estan equilibrados, el sistema
puede alcanzar un estado estable en el que las concentraciones de las variables de estado
se mantienen constantes a lo largo del tiempo.

= QOscilaciones: Dependiendo de los valores de los coeficientes y las condiciones iniciales,
el sistema puede exhibir oscilaciones periédicas en las concentraciones de las variables
de estado. Estas oscilaciones pueden ser regulares o irregulares, y podrian indicar la
presencia de un comportamiento ciclico en el cultivo de levadura.

= Transitoriedad y convergencia: En algunos casos, el sistema puede mostrar un compor-
tamiento transitorio antes de converger hacia un estado estable. Durante este periodo
transitorio, las concentraciones de las variables de estado pueden cambiar significativa-
mente antes de alcanzar un equilibrio.

= Sensibilidad a las perturbaciones: El sistema puede ser sensible a las perturbaciones en
los coeficientes o las condiciones iniciales. Pequefios cambios en estos valores pueden
tener un impacto significativo en las dindmicas del sistema y en las concentraciones
finales de las variables de estado.

Es importante tener en cuenta que nuestro modelo es un sistema dindmico de 4 ecua-
ciones, 2 de ellas no-lineales, y 15 parametros. En virtud de esto, este sistema da pie a una
infinidad de dindmicas enormemente complejas y diferentes. Se pueden vislumbrar de mejor
manera las dindmicas especificas del sistema y realizar un analisis méas detallado de estas, con
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la asignacién de valores numéricos a los coeficientes y a las condiciones iniciales. Ademas, es
conveniente tener en cuenta que la presencia de términos no lineales en las ecuaciones puede
dar lugar a comportamientos dindmicos complejos, como bifurcaciones y caos en ciertos ran-
gos de valores de los coeficientes.

Nuestro objetivo principal en esta seccién es encontrar el conjunto de pardametros y co-
eficientes del modelo que propicien oscilaciones en el consumo de oxigeno en el cultivo de
levadura. Las oscilaciones en el consumo de oxigeno pueden ser indicativas de fenémenos co-
mo el ciclo celular, la regulacién metabdlica o las interacciones entre las células y el ambiente.

Para lograr este objetivo, se requiere realizar un analisis detallado del sistema de ecuaciones
diferenciales y explorar diferentes combinaciones de parametros y coeficientes que puedan
conducir a oscilaciones en el consumo de oxigeno. Algunos enfoques comunes para lograr esto
incluyen:

= Andlisis teérico: Mediante técnicas mateméaticas y andlisis tedrico, se pueden estudiar
las propiedades del sistema dindmico. Esto implica analizar las ecuaciones en su forma
no lineal y determinar condiciones suficientes para la existencia de oscilaciones estables.
Esto podria implicar el uso de métodos analiticos, como el andlisis de estabilidad lineal,
el analisis de bifurcaciones y la teoria de sistemas dindmicos.

» Simulaciones numéricas: Utilizando métodos numéricos y software de simulacion, se
pueden explorar diferentes combinaciones de parametros y coeficientes del modelo para
encontrar conjuntos que produzcan oscilaciones en el consumo de oxigeno. Se pueden
realizar simulaciones de las ecuaciones diferenciales en el tiempo y analizar los resultados
para identificar patrones oscilatorios.

s Optimizacién: Se pueden emplear técnicas de optimizacion para encontrar el conjunto
optimo de parametros y coeficientes que maximicen la probabilidad de generar oscila-
ciones en el consumo de oxigeno. Esto podria involucrar la definicién de una funcién
objetivo que cuantifique la presencia de oscilaciones y el uso de algoritmos de optimiza-
cién para encontrar los valores éptimos.

Es importante tener en cuenta que encontrar el conjunto exacto de parametros y coeficien-
tes que generen oscilaciones en el consumo de oxigeno puede ser un desafio, ya que implica
explorar un espacio de busqueda amplio y complejo. Ademads, la seleccién de los pardmetros y
coeficientes también debe estar respaldada por evidencia experimental y conocimiento biol6gi-
co.

En el presente estudio, se aborda la busqueda del conjunto de parametros y coeficientes
del modelo que generen oscilaciones en el consumo de oxigeno en un cultivo de levadura en un
quimiostato. Dada la complejidad del sistema y la naturaleza dindmica de las interacciones
entre las variables de estado, se ha optado por realizar simulaciones numéricas y emplear
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técnicas de optimizacién para abordar este objetivo. Estas metodologias permitiran explorar
un amplio espacio de busqueda y encontrar las combinaciones 6ptimas que promuevan osci-
laciones en el consumo de oxigeno [36, [75].

En primer lugar, se realizaron simulaciones numéricas de las ecuaciones diferenciales que
describen el sistema dindmico. Estas simulaciones se llevaran a cabo utilizando Python [72], en
particular, librerias especializadas en la solucién numérica de ecuaciones diferenciales, como
Numpy [55]. Se implement6 el algoritmo de integracién numérica, Adams-Bashforth-Moulton,
para obtener las soluciones numéricas de las ecuaciones a lo largo del tiempo. Las condiciones
iniciales y los valores iniciales de los parametros y coeficientes se estableceran de acuerdo con
datos experimentales previos y conocimiento bioldgico [28] [45].

Previamente, se utilizaron herramientas de visualizacién y anélisis para examinar las tra-
yectorias de las variables de estado del sistema en el tiempo, en la bisqueda de patrones
oscilatorios en el consumo de oxigeno. Se simularon, campos de vectores, espacios de fases,
diagramas de bifurcacién y mapas de Poincaré, con el objeto de seleccionar del espacio de
posibilidades numéricas, aquellos conjuntos de pardmetros que propiciaran comportamientos
oscilatorios en la demanda de oxigeno y/o en las restantes variables de estado del sistema (C,
Dy G) [19].

Una vez identificados los patrones oscilatorios, se procedié a la etapa de optimizaciéon de
los parametros escogidos. Se definird una funcién objetivo que cuantifique la presencia y la
calidad de las oscilaciones en el consumo de oxigeno. Esta funcién objetivo estard diseniada
para maximizar la probabilidad de encontrar conjuntos de parametros y coeficientes que ge-
neren oscilaciones estables y robustas.

Para realizar la optimizacién, se pueden emplear técnicas de optimizacion numérica, como
algoritmos genéticos, algoritmos de enjambre de particulas o métodos de gradiente descen-
dente [I7, B9]. Estos algoritmos exploran el espacio de bisqueda de pardmetros y coeficientes
de manera iterativa, ajustando los valores en cada iteracion para mejorar la funcién objetivo
y converger hacia el conjunto éptimo que genere las oscilaciones deseadas en el consumo de
oxigeno. En este trabajo usamos la técnica de los algoritmos genéticos.

Es importante destacar que la seleccién de los algoritmos de optimizacién y la definicion
de la funcién objetivo se realizaran con base en la naturaleza especifica del sistema y las carac-
teristicas buscadas en las oscilaciones. Estos aspectos se fundamentaran en los conocimientos
previos en los conocimientos previos relacionados con el cultivo de levadura y los fenémenos
de consumo de oxigeno [70} 60, 10, 21}, 35].

En resumen, esta seccién se centrard en la bisqueda del conjunto éptimo de pardmetros y
coeficientes que produzcan oscilaciones en el consumo de oxigeno en un cultivo de levadura.
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Esto se abordard mediante simulaciones numéricas para explorar las dindmicas del sistema
y técnicas de optimizacién para encontrar los conjuntos de pardmetros que maximicen la
probabilidad de generar oscilaciones. Este enfoque permitird obtener una comprensiéon mas
profunda de las dindmicas del sistema y sus implicaciones biolégicas.

A continuacién se muestra un diagrama con los pasos de la bisqueda y optimizacién de
parametros.

Busqueda de parametros 6ptimos

Realizar simulaciones numeéricas

Analizar resultados y buscar patrones oscilatorios

Definir funcién objetivo y métricas de evaluacién

Aplicar técnicas de optimizacion

Obtener resultados de los conjuntos 6ptimos

Ajustar pardmetros con los datos experimentales
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3.1.1. Descripcién de los métodos

En nuestra investigacion, utilizamos un enfoque metodolégico progresivo para analizar y com-
prender los patrones oscilatorios en un sistema quimiostato. Comenzamos con la seleccion
cuidadosa de parametros, seguida del analisis del campo de vectores y los diagramas de fase
para comprender la dinamica general del sistema. Luego, nos enfocamos en las bifurcaciones
y los diagramas de retorno para identificar patrones oscilatorios y comprender mejor las ca-
racteristicas temporales del sistema. Utilizamos métodos numéricos para obtener soluciones
detalladas y validar nuestros hallazgos. Finalmente realizamos un proceso de ajuste de curva
con el tnico conjunto de datos disponibles [9]. Este enfoque nos permitié explorar en pro-
fundidad los patrones oscilatorios en el sistema propuesto (2.15)- (2.18) y ensayar un primer
intento de ajuste a las curva experimental.

En primer lugar describimos el comportamiento del campo de vectores asociado a las va-
riables de estado C' y O. Creemos en la importancia de obtener una imagen panoramica de
la dinamica del sistema antes de embarcarnos en un enfoque mas especifico y cuantitativo. El
campo de vectores nos proporcioné una representacion visual de las direcciones y magnitudes
de los vectores de velocidad en cada punto del espacio de fase , permitiéndonos comprender las
interacciones entre las células en estado de compromiso y el oxigeno disuelto. Esperamos que
este enfoque inicial nos brindara una comprensién intuitiva de cémo las variables de estado
se comportan y evolucionan en el tiempo, y nos permitié identificar patrones, tendencias y
posibles oscilaciones en el sistema [68] 2, 32]. A partir de esta panordmica general, pudimos
establecer supuestos y seleccionar rangos de parametros y coeficientes para futuros analisis
mas detallados y rigurosos. En ultima instancia, este enfoque nos proporcioné un contexto
idéneo para la busqueda de los parametros y coeficientes éptimos que mejor describieran la
dindmica de nuestro sistema, y nos permitié vislumbrar, tal vez, de manera mas profunda las
relaciones causales entre las variables de estado.

Es importante volver a mencionar que la obtencién de esta panordmica general de nuestro
sistema se encuentra restringida por la eleccion inicial de los parametros. Conscientes de esta
premisa, se procedié a realizar una seleccion inicial de los pardmetros mediante una heuristica
que involucré una combinacién de ensayo y error, asi como consideraciones de orden bioldgi-
co. Esta aproximacién heuristica permitio establecer valores iniciales que reflejaran de manera
razonable los procesos biolégicos subyacentes en el sistema en estudio. Al comprender que los
sistemas bioldgicos son inherentemente complejos y multifactoriales, se consideré fundamen-
tal esta eleccion inicial basada en una combinacién de conocimiento biolégico y un proceso
iterativo de ajuste. Esta eleccién, aunque no exenta de incertidumbre, sienta las bases para
una exploracién sistematica y rigurosa de los pardmetros 6ptimos que mejor representen la
dindmica de nuestro sistema, y permitié una comprension mas profunda de las relaciones
causales y las oscilaciones presentes en el mismo.

La utilizacién de diagramas de fase es una herramienta fundamental en el andlisis de
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sistemas dinamicos, ya que permite profundizar en las propiedades cualitativas y el compor-
tamiento a largo plazo de dichos sistemas. En este estudio, después de haber empleado el
campo de vectores como una primera aproximacién para comprender la dindmica general del
sistema respecto de las variables de interés, utilizo los diagramas de fase como una segunda
herramienta para explorar con mayor detalle las interacciones entre las variables de estado y
las trayectorias del sistema en el espacio de fase.

Los diagramas de fase ofrecen una representacién visual de las trayectorias que las varia-
bles de estado siguen a medida que evolucionan en el tiempo. Cada punto en el diagrama de
fase corresponde a un estado del sistema en un momento especifico, y las trayectorias mues-
tran cémo esos estados cambian y se relacionan entre si a medida que el tiempo avanza. Estos
diagramas permiten identificar regiones de estabilidad, puntos de equilibrio, ciclos limite y
otros comportamientos caracteristicos del sistema [68], 2].

Al combinar la informacion obtenida del campo de vectores con los diagramas de fase, se
obtuvo una comprensién mas completa y detallada de las propiedades cualitativas del sistema
en estudio. Los diagramas de fase nos permitieron visualizar las trayectorias en el espacio de
fase y analizar como los valores iniciales, los pardmetros y los coeficientes elegidos influyen
en el comportamiento a largo plazo del sistema. Ademads, nos proporcionaron una herramien-
ta poderosa para identificar patrones, bifurcaciones y estructuras emergentes en el sistema
[68, 25].

Con el objetivo de identificar posibles estados del sistema que favorezcan la presencia de
oscilaciones, avanzamos en el estudio de bifurcaciones y en la construcciéon de un grafico de
Poincaré para la variable del oxigeno disuelto O. Este andlisis nos permitié examinar cémo
cambia el comportamiento del sistema a medida que se varia un parametro especifico, lo que
nos proporcioné informacién valiosa sobre las transiciones entre diferentes estados y la esta-
bilidad del sistema [47, [49]. En nuestro caso, el pardmetro que varidramos fue la dilucién d, lo
cual nos permiti6 identificar valores criticos de d donde pudieran ocurrir cambios significativos
en la dindmica del sistema.

Por otro lado, la construccion de un grafico de Poincaré para el oxigeno disuelto nos per-
mitié investigar la variabilidad y los patrones recurrentes en la dindmica del sistema. Este
enfoque, ampliamente utilizado en el andlisis de series temporales y fenémenos oscilatorios,
nos proporcioné informacién valiosa sobre las caracteristicas de las oscilaciones presentes en
el sistemal[ll, 59, [37]. Al estudiar la relacién entre los valores actuales y desfasados del oxigeno
disuelto, logramos identificar patrones ciclicos y detectar cambios en la variabilidad del siste-
ma.

Un diagrama de bifurcaciones es una representacion grafica que nos permite observar como
cambian las soluciones de un sistema dindmico a medida que se varia un parametro especifico
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[25]. Este tipo de diagrama es utilizado para visualizar los cambios cualitativos en el compor-
tamiento del sistema en funcién del valor del pardmetro.
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Capitulo 4

Resultados

4.1. Busqueda de parametros

Los valores de los pardmetros y de las condiciones iniciales es determinante en la dindmica
del sistema. Para nuestro modelo dado por el sistema (2.15)-(2.18), hemos supuesto que los
siguientes valores constituyen un conjunto de candidatos apropiados para generar oscilaciones
autosostenidas en la variable de estado del oxigeno disuelto O.

Parametro Valor

d 0.1
Hmax 0,18
Vs 0,65
Ke, 0,1
Ko, 0,1
K, 0,005
Ko, 0,005
Gin 10
Yoo 0,7
Yo, 0,1
Yo, 0,1
Yo, 0,7

k 1.2
Osat 10

a 0,05

Tabla 4.1: Pardmetros iniciales.
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Es razonable pensar que, el conjunto de pardmetros y las condiciones iniciales propues-
tas, podrian generar oscilaciones sostenidas en la variable de estado del oxigeno disuelto. La
combinacién de una alta tasa de transferencia de masa del oxigeno, un consumo relativamen-
te bajo de este por parte de las células y una eliminacién continua de estas; puede llevar a
oscilaciones peridédicas en la concentracion de oxigeno disuelto. Los parametros propuestos
en conjunto con las condiciones iniciales elegidas, presentan caracteristicas que sugieren la
presencia de oscilaciones sostenidas en la concentracién de oxigeno disuelto, por las razones
que detallamos a continuacion.

Al considerar los valores de los pardmetros y coeficientes, podemos observar que el coefi-
ciente k es mayor que 1, indicando una tasa de transferencia de masa del oxigeno relativamente
alta. Ademas, los coeficientes Yo, y Yo son tales que % es menor que 1y ﬁ es mayor
que 1, lo cual implica que el consumo de oxigeno por las células en estado de desarrollo es
relativamente bajo en comparacién con el consumo de oxigeno de las células en estado de
compromiso, lo cual es coherente con la hipétesis de que la sincronia de células comprome-
tidas con el CDC mas el metabolismo propio de las células que inician CDC incrementan la
tasa de consumo de oxigeno.

En cuanto a los deméas parametros, se observa que el coeficiente de dilucién d es mayor
que 0, lo que implica una eliminacién continua de las células del quimiostato. Por otro lado
los valores de fimax ¥ Vmax indican tasas de crecimiento maximas de las células en desarrollo y
en estado de compromiso, respectivamente, que difieren entre si de tal manera que se propicie
un crecimiento mayor en la concentracion de biomasa de células en el estado de compromiso.

Los coeficientes Kg,, Ko,, Kg., y Ko, estan asociados con la cinética de crecimiento
celular y la afinidad por los sustratos. Estos coeficientes determinan cémo las células respon-
den a la disponibilidad de glucosa y oxigeno en el medio de cultivo. Un valor alto de estos
coeficientes indica una mayor afinidad de las células por los sustratos correspondientes, de
tal manera que, al haber una mayor afinidad de las células en estado de desarrollo con los
sustratos respectivos, este grupo de células ejerce un gran impacto sobre la disponibilidad de
estos.

Cuando se combinan tasas de crecimiento méximas diferenciadas, coeficientes de cinética
de crecimiento y afinidad por sustratos adecuados, junto con una transferencia de masa de
oxigeno significativa y rendimientos en consumo de oxigeno disimiles acompanados de bajo
consumo, se pueden esperar oscilaciones sostenidas en la concentracion de oxigeno disuelto.

Estas oscilaciones ocurren como resultado de la retroalimentacién positiva y negativa entre
las variables del sistema. Por ejemplo, un aumento en la concentracién de células en estado de
compromiso puede conducir a un mayor consumo de oxigeno, lo que reduce la concentracion
de oxigeno disuelto. A su vez, una disminucién en la concentracién de oxigeno puede afectar
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la tasa de crecimiento de las células en desarrollo y, por lo tanto, influir en la concentraciéon de
células en estado de compromiso. Estas interacciones dindmicas pueden generar oscilaciones
periédicas en la concentracién de oxigeno disuelto.

4.2. Anadlisis y busqueda de patrones oscilatorios

4.2.1. Campo de vectores para nuestro modelo

La figura 4.1 representa el campo de vectores para C' y O generado por nuestro modelo
(2.15)-(2.18), tomando como condiciones iniciales C = 1, D = 1, G = 1y O = 1. Los
parametros usados aparecen al pie de la figura. Para producir la figura se han usado el médulo
matplotlib.pyplot de la biblioteca matplotlib en conjunto con la libreria NumPy, ambas de
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Concentracion de Células Comprometidas

Figura 4.1: Campo de vectores de C'y O . Pardmetros: d = 0,1; pgmax = 0,18; vmax = 0,65;

Kg, = 0,1; Ko, = 0,1; Kg,. = 0,005; Ko, = 0,005; Gy, = 10; Yg, = 0,7; Yg, = 0,1;
Yoo = 0,1; Yo, = 0,7; k = 1,2; Oger = 10; @ = 0,05.
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Si hacemos un barrido desde izquierda a derecha podemos observar que para valores bajos
de O los vectores indican un incremento sostenido de esta variable. A medida que subimos,
el panorama es distinto. Si nos situamos en el primer tercio vertical y nos movemos hacia
la derecha se puede apreciar como las flechas giran y cambian de direcciéon y magnitud ya a
partir de O = 1. Si subimos al segundo y tercer tercio de la imagen el cambio de direcciéon
y sentido de las flechas ocurre para valores mas bajos de C, concretamente para valores de
C < 1. Esto parece indicar que una mayor disponibilidad de oxigeno disuelto estd asociado
con una tendencia al aumento en el consumo de este, que se ve fortalecido, a su vez, con el
aumento en la concentracién de células en estado de compromiso. A su vez, el aumento en la
concentracion de estas células, muestra un incremento en la velocidad de caida en la concen-
tracién del oxigeno disuelto, tal como se puede inferir de la magnitud, direccién y sentido de
los vectores en el cuarto superior derecho del diagrama.

La dindmica que muestra el campo de vectores sugiere una relacién entre el oxigeno di-
suelto y la concentracion de células en estado de compromiso. Se destaca que un mayor nivel
de oxigeno disuelto estd asociado con un aumento en el consumo, especialmente cuando se
observa el cuarto superior derecho del diagrama. Esto recalca una interdependencia y retro-
alimentacién entre estas dos variables, y sugiere que el andlisis debe centrarse en los rangos
en los que esta interaccién es mas notoria.

4.2.2. Diagramas de fase para nuestro modelo

Reproducimos los diagramas de fase de tres variables de estado clave, células comprometidas,
células en desarrollo y oxigeno disuelto, en tres escenarios: células comprometidas vs células
en desarrollo, células comprometidas vs oxigeno disuelto y células en desarrollo vs oxigeno
disuelto. Nuestro objetivo principal fue explorar los patrones oscilatorios presentes en el con-
sumo de oxigeno y su relacién con las células en sus diferentes estados a mediano y largo
plazo [53]. A través de este andlisis, buscamos obtener una comprensiéon mas profunda de las
dindmicas del sistema y de su relevancia para nuestra investigacién [71) [24]. Para generar los
diagramas se utilizé la funciéon odeint del médulo scipy.integrate de la biblioteca SciPy en
conjunto con la biblioteca NumPy, ambas de Python.

En el diagrama de fase representado por la figura (4.2), se observa una estructura en
forma de espiral con una circunferencia central hacia la cual parece converger la trayectoria.
Esta configuracion es caracteristica de un atractor tipo espiral, que es cominmente encon-
trado en sistemas dindmicos no lineales. El comportamiento en espiral sugiere la presencia
de oscilaciones amortiguadas en las variables de estado representadas en el diagrama: las
células comprometidas (C) y las células en desarrollo (D). La convergencia hacia la circunfe-
rencia central indica que las oscilaciones estdn acotadas y tienden a un estado estacionario.
La circunferencia representa un ciclo limite estable, que corresponde a una solucién periédica
en el sistema. Esto significa que las células comprometidas y las células en desarrollo exhi-
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ben oscilaciones regulares y repetitivas en sus concentraciones a medida que el tiempo avanza.
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05 Diagrama de Fase: Comprometidas vs En Desarrollo
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Figura 4.2: Diagrama de fase: Comprometidas v/s En Desarrollo. Se observa una estructura
espiral con una circunferencia central, indicando oscilaciones amortiguadas en las células com-
prometidas y en desarrollo. La convergencia hacia la circunferencia muestra un ciclo limite
estable, revelando oscilaciones regulares y repetitivas. Esto sugiere un mecanismo de autorre-
gulacién en el sistema.

En el diagrama de fase de concentraciéon de células en estado de compromiso vs. oxigeno
disuelto (Figura 4.3), se observa una trayectoria més compleja y dindmica que la anterior.
Inicialmente, la trayectoria describe una vuelta ovalada y horizontal en el costado inferior
derecho de la grafica, indicando un estado de equilibrio estable en el cual la concentracion
de células en estado de compromiso y el nivel de oxigeno disuelto crecen de manera propor-
cional. A medida que la trayectoria se desplaza dando vueltas hacia el centro de la gréfica,
se producen vueltas més pequenas con la misma forma ovalada, lo que sugiere oscilaciones
amortiguadas en las variables.
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Diagrama de Fase: Células Comprometidas vs Oxigeno Disuelto

Oxigeno Disuelto, [mgiL]
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Figura 4.3: Diagrama de fase: Comprometidas v/s Oxigeno Disuelto. Este diagrama de fase
muestra una trayectoria compleja y dindmica en el espacio de las concentraciones de células
en estado de compromiso y oxigeno disuelto. Se observa una evolucién desde un estado de
crecimiento lineal hacia oscilaciones amortiguadas, seguido de una estabilizacién en torno a
un ciclo limite principal. Estos patrones sugieren interacciones y retroalimentaciones entre las
variables de interés.

La convergencia de las vueltas hacia el centro de la grafica indica una disminucién gradual
en la concentracién de células comprometidas. Este comportamiento puede ser atribuido a
un mecanismo de retroalimentaciéon negativa en el que el aumento de la concentraciéon de
células comprometidas conduce a un mayor consumo de oxigeno, lo que a su vez disminuye
la disponibilidad de oxigeno disuelto en el entorno celular, limitando asi el crecimiento, a su
vez, de las células comprometidas.

Sin embargo, el cambio de direccién de la trayectoria y la formacion de un 6valo alargado
inclinado en aproximadamente —45 ° revelan una estabilizacién de la trayectoria en torno a un
ciclo limite en el que el aumento en la disponibilidad de oxigeno disuelto esta correlacionado
con una disminucién en la concentracién de células en estado de compromiso.

En el diagrama de fase de células en desarrollo v/s oxigeno disuelto (Figura 4.4), se obser-
va una trayectoria en forma de espiral que se arremolina desde las regiones exteriores hacia
el centro del diagrama. Esta dindmica sugiere una relacién entre las células en desarrollo y
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Diagrama de Fase: Células En Desarrollo vs Oxigeno Disuelto
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Figura 4.4: Diagrama de fase: En Desarrollo v/s Oxigeno Disuelto. El diagrama de fase muestra
una trayectoria en forma de espiral que se arremolina hacia el centro, indicando una relacién
entre las células en desarrollo y el nivel de oxigeno disuelto. A medida que las células en
desarrollo aumentan, se consume mas oxigeno y su disponibilidad disminuye. Esto afecta el
crecimiento de las células en desarrollo y puede estar influenciado por las células en estado de
compromiso.

el nivel de oxigeno disuelto en el entorno. A medida que las células en desarrollo aumentan
en concentraciéon, se produce un mayor consumo de oxigeno disuelto, lo que a su vez redu-
ce su disponibilidad en el medio. Luego, mientras disminuye el oxigeno disuelto en el medio
el crecimiento de la concentracion de células en desarrollo se detiene, para luego disminuir
bruscamente, permitiendo una vez que esta concentraciéon es extremadamente pequefia, un
aumento abrupto en la concentraciéon del oxigeno disuelto. Este tltimo fenémeno podria ser
indicativo de la accién de algiin mecanismo externo sobre las células en estado de desarrollo.
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4.2.3. Diagramas de bifurcaciéon para nuestro modelo

Al analizar el diagrama de bifurcaciones, podemos identificar patrones y cambios cualitativos
en las soluciones del sistema. Por ejemplo, podemos observar la aparicion de bifurcaciones,
donde una solucién estable se divide en multiples soluciones estables o inestables. También
podemos detectar transiciones en el comportamiento del sistema, como la aparicién de osci-
laciones o la entrada en un estado cadtico. Para producir el diagrama se utilizé la funcién
odeint del médulo scipy.integrate de la biblioteca SciPy en conjunto con la biblioteca NumPy,
ambas de Python.

El siguiente diagrama de bifurcaciones (Figura 4.5) nos muestra los valores estables de la
variable O a medida que se hace variar el valor de la tasa de dilucién d[f] Estos valores mues-
tran una gran variabilidad en el rango que va desde 0,1 hasta 0,175 aproximadamente. Desde
0,175 hasta 0,4 los valores de O se estabilizan en O = 10. Esto sugiere dos cosas. La primera
es, que el abigarrado desorden de los valores estables de O desde d = 0 hasta d = 0,175,
sugieren la posibilidad de la existencia de oscilaciones en O. Por el contrario, desde d = 0,175
hasta d = 0,4 la existencia de oscilaciones en la variable O, es improbable.

Diagrama de bifurcacion
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Figura 4.5: Diagrama de Bifurcaciéon. El desorden de los valores estables de O desde d = 0
hasta d = 0,175, sugieren la posibilidad de la existencia de oscilaciones en O. Por el contrario,
desde d = 0,175 hasta d = 0,4 la existencia de oscilaciones en la variable O, es improbable.

'El algoritmo define un rango de valores para el pardmetro de dilucién d usando np.linspace que genera
una secuencia de 100 valores equidistantes entre 0,1 y 0,4. Una vez que odeint resuelve el sistema de ecuaciones
para un valor de d, la matriz resultante sol contiene las soluciones numéricas para cada variable del sistema
en cada punto de tiempo. Para obtener los valores estables de la variable O, se extraen los valores finales de O
de la dltima fila de la matriz sol, que corresponde al tiempo final de integracién.
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4.2.4. Grafica de Poincaré aplicada a nuestro modelo

La grafica de Poincaré es una herramienta de analisis utilizada para visualizar y estudiar la
dindmica de sistemas dindmicos periédicos o que exhiben comportamientos oscilatorios [68].
En nuestro caso, la utilizaremos para analizar la variable O y detectar posibles oscilaciones en
el sistema. Como explicamos, la idea detras de la grafica de Poincaré es tomar una variable de
interés, en este caso O, y muestrear su valor en momentos especificos en el tiempo. En lugar
de representar todos los puntos de la variable O a lo largo del tiempo, se toma una muestra
selectiva. En la grafica de Poincaré, se representa el valor actual de la variable O en el eje X,
y se muestra el valor desfasado en una unidad temporal en el eje Y. Esto significa que para
cada punto en la grafica, se toma el valor actual de O y se grafica el valor de O en el préximo
intervalo de tiempo.Al representar estos pares de valores (O, Oyy1) en la grafica, se obtiene
una representacion visual de la dinamica del sistema. Si el sistema exhibe un comportamiento
periddico u oscilatorio, los puntos en la grafica de Poincaré se agruparan en una estructura
caracteristica, como una linea o una curva cerrada. Si el sistema no presenta oscilaciones, los
puntos se dispersaran de manera mas desordenada. [59]. Para generar los diagramas se utilizé
la biblioteca NumPy en conjunto con el médulo matplotlib.pyplot de la libreria matplotlib,
ambas de Python.

La primera gréafica (Figura 4.6) usa una muestra de 100 iteraciones de los valores de O.
Los puntos de coordenadas (O, Oy11) forman claramente una linea recta. Esto sugiere la
existencia de oscilaciones.

Ahora usamos una muestra de 1000 iteraciones de valores de O (Figura 4.7). En este caso
los puntos de coordenadas (O, Oy1) comienzan a dispersarse. Esto sugiere la presencia de
inestabilidad en las oscilaciones de O.

70



Diagrama de Poincaré: Oxigeno disuelto
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Figura 4.6: Diagrama de Poincaré. Los puntos de coordenadas (O, O,+1) se encuentran per-
fectamente alineados. Se us6 una muestra de 100 iteraciones. Este hecho indica una probabi-
lidad altisima de oscilaciones en la variable O.

4.2.5. Soluciones numéricas para nuestro modelo

La figura 4.8 muestra las soluciones numéricas del sistema dindmico definido por las ecua-
ciones de nuestro modelo (2.15)-(2.18), implementado en Python, utilizando la libreria Scipy.
Esta libreria proporciona métodos numéricos eficientes para resolver ecuaciones diferenciales
ordinarias, como el método odeimﬂ utilizado en este caso.

2El método odeint utilizado en Python pertenece a la librerfa Scipy [34]. Scipy es una librerfa cientifica
ampliamente utilizada en Python para el procesamiento y andlisis de datos cientificos, incluyendo la resolucién
numérica de ecuaciones diferenciales ordinarias. En particular, odeint implementa un método de integracién
numérica de orden variable conocido como método de Adams-Bashforth-Moulton [27]. Este método combina
pasos hacia adelante y hacia atrds para lograr una mayor precisién y estabilidad en la solucién numérica de
las ecuaciones diferenciales ordinarias. El método de Adams-Bashforth-Moulton es un enfoque popular en la
resoluciéon numeérica de ecuaciones diferenciales y se ha utilizado ampliamente en diversos campos cientificos,
incluyendo la biologia, la fisica y la ingenierfa [3]. Su implementacién en la librerfa Scipy proporciona una
herramienta confiable y eficiente para resolver sistemas dindmicos complejos y comprender mejor las dindmicas
de los sistemas biolégicos.
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Diagrama de Poincaré: Oxigeno disuelto
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Figura 4.7: Diagrama de Poincaré. Con 1000 iteraciones aparece un conjunto de puntos aleja-
dos de la linea central. Este hecho sugiere la presencia de inestabilidad en las oscilaciones de

0.

El sistema dindmico representa la dindmica de las variables de estado C' (concentracién
de células en estado de compromiso), D (concentracién de células en estado de desarrollo), G
(concentracién de glucosa) y O (concentracién de oxigeno disuelto) en un cultivo de levadura
en un quimiostato. Las ecuaciones diferenciales del sistema se definen en la funcién ode-model,
que utiliza los pardmetros y coeficientes proporcionados. El método odeint resuelve numéri-
camente las ecuaciones diferenciales a lo largo de un intervalo de tiempo especificado. En este
caso, se utiliza un vector de tiempo t con una longitud de N; y un intervalo de tiempo maximo
de tjee. La condicién inicial del sistema se establece en el vector X.

La grafica (Figura 4.8) muestra las concentraciones de las variables de estado en funcién
del tiempo. En particular, se resalta la concentracién de oxigeno disuelto (O), que es la va-
riable de mayor interés. Se observan oscilaciones periddicas en la concentraciéon de oxigeno
disuelto, a lo largo del tiempo. Estos resultados respaldan la hip6tesis planteada por Burnetti
et al. [10, 9], donde se propone que las oscilaciones en el oxigeno disuelto estdn relacionadas
con un reclutamiento repentino de células en estado de compromiso por parte de células en
la etapa final de su fase de desarrollo, a través de senales. Segiin Burnetti et al. [I0, 9] esta
explosion repentina en el niimero de células en estado de compromiso conduce a un aumento
acelerado en el consumo de oxigeno.
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Oscilaciones biomasa y oxigeno disuelto
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Figura 4.8: Soluciones numéricas. La grafica muestra las oscilaciones de la concentraciéon de
células en estado de compromiso (rojo), células en estado de desarrollo (azul) y la concen-
tracién de oxigeno disuelto (verde) en el cultivo de levadura en un quimiostato. Los valores
iniciales y los parametros del sistema se han configurado de acuerdo con el modelo propuesto.
Las oscilaciones en la concentraciéon de oxigeno disuelto son evidencia de un reclutamiento

repentino de células en estado de compromiso, lo que resulta en un aumento acelerado del
consumo de oxigeno.

La implementacién numérica y los resultados obtenidos mediante el uso de la libreria Scipy
respaldan la hipdtesis propuesta, ya que las oscilaciones en la concentracién de oxigeno di-
suelto son claramente evidentes a partir de la grafica obtenida (Figura 4.8). Esto sugiere que
el sistema dindmico modelado con los parametros y coeficientes dados es capaz de generar las
oscilaciones esperadas en el oxigeno disuelto, lo que es consistente con la hipdtesis y con el
trabajo previo de Burnetti et al. [10, [9].
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Para obtener las gréficas de las figuras (4.9)-(4.12) se usaron las librerias NumPy, Pandas,
Matplotlib y ipwidgets, todos de Python.

Las gréaficas de la figura 4.9 muestran la variacién de la tasa de obediencia a en las con-
centraciones de las células en estado de “Compromiso”y “Desarrollo” a lo largo del tiempo en
el cultivo.
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Figura 4.9: Variacién del parametro a. Las graficas muestran como la variacion de la tasa de
obediencia a afecta las concentraciones de las células en estado de compromiso y desarrollo
en un cultivo de levadura. Se observa que un aumento en a promueve el crecimiento de
ambas poblaciones celulares a lo largo del tiempo. Estos resultados respaldan la hipotesis de
reclutamiento de células en estado de compromiso por parte de las células en desarrollo.

En la grafica superior (Figura 4.9), que representa la concentraciéon de células en estado
de compromiso en funcién del tiempo, se puede ver que a medida que el valor de a aumenta,
la concentracién de células en estado de compromiso también aumenta. Esto sugiere que una
mayor tasa de obediencia a promueve un mayor crecimiento de las células en estado de com-
promiso. Por otro lado, en la grafica inferior (Figura 4.9), que muestra la concentracién de
células en estado de desarrollo en funcién del tiempo, se puede apreciar una tendencia similar.
A medida que el valor de a aumenta, la concentracién de células en estado de desarrollo tam-
bién aumenta. Esto indica que un aumento en la tasa de obediencia favorece el crecimiento
de las células en estado de desarrollo.

Estos resultados son consistentes con la hipétesis planteada en el contexto del modelo y
respaldada por trabajos previos, donde se sugiere que la tasa de obediencia a esta relacionada
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con la capacidad de reclutamiento de células en estado de desarrollo, por parte de las células
en estado de compromiso. Un aumento en a permite una mayor comunicacion y reclutamiento
de células en estado de desarrollo, lo que resulta en un incremento en las concentraciones de
ambas poblaciones celulares.

Al analizar las gréaficas de la figura 4.10, se puede observar que el cambio en el pardametro a
afecta principalmente a la amplitud de las oscilaciones en la concentracion de oxigeno disuelto
y glucosa. A medida que el valor de a aumenta, las oscilaciones en ambas concentraciones
también aumentan en amplitud. Esto implica que un incremento en a conduce a oscilaciones
mas pronunciadas y marcadas tanto, en la concentracién de oxigeno disuelto, como en la
concentracién de glucosa a lo largo del tiempo.
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Figura 4.10: Variacién del pardmetro a. A medida que el valor de la tasa de obediencia a
aumenta, se observa un incremento en la amplitud y pronunciacién de las oscilaciones en las
concentraciones de glucosa y oxigeno disuelto. Esta respuesta se debe a la intensificacién de
la competencia y el consumo de sustratos por parte de las células en estado de compromiso,
influenciado por el pardmetro a. En consecuencia, se generan oscilaciones méas marcadas en
las concentraciones de glucosa y oxigeno disuelto en el quimiostato.

Este comportamiento puede ser explicado por el efecto de la tasa de obediencia, repre-
sentada por el pardmetro a, en la interaccion entre las células en estado de compromiso y en
estado de desarrollo. A medida que a aumenta, la tasa de reclutamiento de células en estado
de desarrollo, por parte de las células en estado de compromiso, se intensifica. Esto resulta en
una mayor competencia y consumo de oxigeno y glucosa por parte de las células en estado de
compromiso, lo que a su vez genera oscilaciones més pronunciadas en las concentraciones de
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ambos sustratos en el cultivo de levadura.
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Las graficas de la figura 4.11 muestran el efecto de la variaciéon de la tasa de diluciéon d en
las oscilaciones de las concentraciones de las células en estado de compromiso y desarrollo. Se
observa que a medida que el valor de d aumenta, las amplitudes de las oscilaciones en ambas
concentraciones disminuyen. Esto se debe a que una tasa de dilucién mas alta implica una
eliminacion mas rapida de las células del sistema, lo que limita su acumulacién y reduce las
fluctuaciones en las concentraciones alcanzadas. Por otro lado, una tasa de dilucién mas baja
permite que las células se acumulen y, por lo tanto, se observan amplitudes de oscilacion més
grandes.
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Figura 4.11: Variacién del parametro d. La variacién de la tasa de dilucion d afecta las ampli-
tudes de las oscilaciones. Un mayor valor de d reduce las amplitudes, mientras que un valor

mas bajo las aumenta. Esto demuestra la influencia de la tasa de dilucién en la dindmica del
sistema.
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Las graficas de la figura 4.12 muestran el efecto de la variacién de la tasa de diluciéon
d en las oscilaciones de las concentraciones de glucosa y oxigeno disuelto. Se observa que a
medida que el valor de d aumenta, las amplitudes de las oscilaciones en ambas concentracio-
nes permanecen, practicamente inalteradas. En cambio a una mayor tasa de dilucién d, se
puede observar un desfase en ambas familias de oscilaciones. Respecto de las oscilaciones del
oxigeno disuelto es particularmente notable el aumento en el periodo de disponibilidad, de una
concentracién de oxigeno disuelto maxima, en la medida en que la tasa de dilucién d aumenta.
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Figura 4.12: Variaciéon del pardmetro d. La variaciéon de la tasa de dilucién d practicamente
no afecta la amplitud de las oscilaciones de las concentraciones de oxigeno disuelto y glucosa.
Si afecta los periodos de ambas oscilaciones, siendo mas pronunciado este efecto en las oscila-
ciones de O. Un mayor valor de d incrementa el periédo de disponibilidad del oxigeno disuelto
en una concentracién maxima, para las células.
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4.3. Optimizaciéon de parametros

4.3.1. Algoritmos Genéticos para nuestro modelo

A continuacion se presenta la tabla que muestra el conjunto de parametros obtenidos aplicando
la técnica de algoritmos genéticos:

Parametro Valor

d 0.1807
fima 0.2054
Vinax 0.6526
Kap 0.0726
Ko, 0.1790
Ka, 0.0006
Ko, 0.0079

Gin 8.2470
Yoo 0.6846
Yo, 0.1425
Yor. 0.1300
Yo, 0.8129

k 1.4155
Osat 7.008

a 0.0425

Tabla 4.2: Pardmetros depurados después de un proceso evolutivo de 100 generaciones a partir
de una poblacién de 100 individuos.

Para producir las figuras (4.13) y (4.14) se us6 el médulo matplotlib.pyplot de la libreria

matplotlib en conjunto con las librerias NumPy y la funcién odeint del médulo scipy.integrate
de la biblioteca SciPy.
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Evolucién de la aptitud promedio en el algoritmo genético
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Figura 4.13: Evolucién de la aptitud promedio. La grifica muestra la evolucién de la aptitud
promedio de los individuos segin el ntimero de generaciones.
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Figura 4.14: Soluciones numéricas con parametros depurados. La grafica muestra las soluciones
de nuestro modelo de ecuaciones diferenciales usando los pardmetros obtenidos con la técnica
de optimizacién de algoritmos genéticos.
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4.4. Ajuste de parametros

Se utilizaron diferentes implementaciones del método de minimizaciéon de cuadrados previa-
mente descrito. Para llevar a cabo esta tarea, se utilizaron diversas librerfas de Python [72],
como Numpy [55] y Scipy [73]. También se ensay6 una implementacién con Lmfit [54]. Este
conjunto de datos experimentales se obtuvo del estudio de Anthony Burnetti, Coupling of
the Yeast Metabolic Cycle and the Cell Division Cycle in Populations and Single Cells del
ano 2017, trabajo de tesis en el cual se conceptualiza y cuantifica por vez primera el estado
de “Compromiso Celular” (Cell Commitment) [9]. En la primera columna se encuentran los
valores de tiempo, mientras que en la segunda y tercera columna se registra la fraccion de
células comprometidas C'y la concentraciéon de oxigeno disuelto O.

81



Tiempo Fraccion Comprometida Oxigeno Disuelto

15 0.720 6.7905
30 0.648 6.7703
45 0.548 6.7501
60 0.484 6.7602
75 0.388 6.7602
90 0.316 6.7891
105 0.248 6.7804
120 0.172 6.7508
135 0.308 6.6042
150 0.572 6.3860
165 0.888 6.6186
180 0.832 6.8079
195 0.724 6.8158
210 0.680 6.8079
225 0.628 6.7790
240 0.656 6.7652
255 0.504 6.7587
270 0.452 6.7385
285 0.392 6.7226
300 0.324 6.7385
315 0.256 6.7790
330 0.192 6.7790
345 0.220 6.7587
360 0.212 6.6656
375 0.532 6.3022
390 0.752 6.5146
405 0.644 6.8050
420 0.508 6.8079
435 0.472 6.7992
450 0.408 6.7631

Tabla 4.3: Valores experimentales de la fraccién de células en estado de compromiso y con-
centracién de oxigeno disuelto. Datos extraidos de Burnetti, 2017 [9].
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La Figura 4.15 muestra la curva de oxigeno disuelto versus la fraccion de células compro-
metidas.
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Figura 4.15: Fraccion de Células en estado de Compromiso y Oxigeno Disuelto. La figura
extraida de Burnetti, 2017 [9] muestra la curva de oxigeno disuelto (pO3) (curva de color
negro) en conjunto con la curva de la fraccién de células en estado de compromiso (Fraction
Committed) ( curva de color verde). Los circulos rellenos y vacios corresponden a los puntos
en donde este grupo de células ingresa al HOC y egresa del HOC respectivamente.
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A continuacién se muestra una tabla con los parametros resultante del ajuste de curva.

Parametro Valor

d 0.27016
fimax 0.28644
Vinax 0.73060
Ka, 0.10776
Ko, 0.18152
Ka, 0.00007
Ko, 0.00903

Gin 7.90520
Yoo 0.24420
Yo, 0.07398
Yoo 0.14233
Yo, 0.72640

k 2.12896
Osat 6.72159

a 0.05059

Tabla 4.4: Pardmetros ajustados a los datos experimentales obtenidos de Burnetti, 2017 [9]
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La figura 4.16 muestra una grafica comparativa de los puntos experimentales y las curvas
generadas por la implementacion del modelo de los parametros ajustados. Para generar esta
figura se usé el moédulo matplotlib.pyplot de la libreria matplotlib en conjunto con las librerias
Numpy y la funcién solve_ivp del médulo scipy.integrate de la biblioteca SciPy.
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Figura 4.16: Parametros Ajustados. La figura muestra el resultado del ajuste de curva. Los
puntos de color rojo representan los valores experimentales de la fracciéon de células compro-
metidas. Los puntos de color azul representan los niveles experimentales de oxigeno disuelto.
La linea de color purpura representa la curva ajustada de la fraccion de células comprometidas
y la curva de color gris representa la curva ajustada del nivel de oxigeno disuelto.
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4.5. Discusion de los resultados

En nuestro trabajo, hemos logrado combinar conocimiento biolégico, como la hipdtesis de
Futcher [2I] y el esquema simplificado de Burnetti [10, O] (Células Comprometidas-Células
Refractarias), en un modelo de ecuaciones diferenciales. Este modelo es capaz de reproducir
las oscilaciones en el consumo de oxigeno y la dindmica poblacional de las células comprome-
tidas en el ciclo de divisién celular (CDC).

Aunque el ajuste de cuerva realizado con parametros optimizados respecto a un conjunto
limitado de datos experimentales no ha sido completamente satisfactorio, creemos que esto se
puede solucionar implementando nuevos ajustes de parametros y considerando conjuntos més
variados y ricos de datos.

Nuestro enfoque combina conocimiento biolégico y modelizacién matemaéatica para com-
prender las dindmicas complejas de los sistemas biolégicos. Al incorporar la hipdtesis de
Futcher [2I] y el esquema de Burnetti [10] en nuestro modelo, hemos logrado capturar las
oscilaciones en el consumo de oxigeno y modelar la dindmica de las células comprometidas,
hecho inédito en los estudios matematicos de sistemas biolégicos.

Es mas, con la incorporaciéon de esta idea hemos rescatado un aspecto que no habia sido
considerado como elemento crucial en investigaciones relacionadas con el comportamiento os-
cilatorio de los elementos presentes en un cultivo de levadura en condiciones de continuidad
y limitacién de nutrientes, pero cuya importancia investigadores como Burnetti [9] y Laxman
[46] ya habian vislumbrado. Nos referimos a la existencia del estado celular de compromiso y
la consecuente segregacién poblacional relacionada con dicho estado.

Para mejorar nuestro modelo y obtener resultados més satisfactorios, proponemos combi-
nar diferentes tipos de ajustes con conjuntos més diversos y extensos de datos experimentales.
Esto nos permitira afinar los parametros y obtener una mejor correspondencia entre el modelo
y los datos observados. Recientemente hemos obtenido los datos experimentales del trabajo
de Tu et al. [70]. Este rico y variado conjunto de datos podria utilizarse para realizar un nuevo
ajuste de curva, al menos, con respecto de los niveles de oxigeno disuelto.
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Capitulo 5

Conclusion

5.1. Conclusiones

El modelo matematico produce oscilaciones en la concentraciones del oxigeno
disuelto

Nuestro estudio demuestra que el modelo matemético (2.15)-(2.18) es capaz de producir osci-
laciones en las variables de estado del sistema. Especificamente, hemos observado oscilaciones
significativas en la concentracién de oxigeno disuelto y las concentraciones relativas de las
poblaciones de células en los estados de compromiso y desarrollo. Estas oscilaciones son el re-
sultado de las complejas interacciones entre los elementos del modelo para cierta configuracion
de sus parametros.

Las oscilaciones en el oxigeno disuelto se producen para valores de la tasa de
dilucién entre d =0,1 y d = 0,18

Las oscilaciones en la concentracion de oxigeno disuelto son susceptibles de producirse dentro
de un rango especifico de valores de la tasa de dilucién del sistema, en concreto, entre d = 0,1
y d = 0,18. Este hecho coincide con el reporte de Porro et al.[60]. Durante este intervalo de
tasa de dilucién, hemos observado la presencia de oscilaciones peridédicas en la concentracién
de oxigeno disuelto, lo que indica la existencia de un comportamiento dindmico complejo
en el sistema. Estas oscilaciones son el resultado de las interacciones entre las variables del
sistema, como la concentracién de biomasa, de sustrato limitante y la concentracion de oxigeno
disuelto, para cierta configuracion de sus parametros. A medida que la tasa de dilucién varia
dentro del rango mencionado, se producen cambios en las condiciones de flujo de nutrientes
y metabolitos en el sistema. Estos cambios, a su vez, afectan la dindmica del oxigeno disuelto
y dan lugar a oscilaciones peridédicas en su concentracion.
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El modelo propuesto da cuenta de una dindmica simplificada del proceso de sin-
cronizacién de células, atin sin ser ajustado satisfactoriamente al tinico conjunto
de datos disponible

El modelo propuesto captura de manera adecuada una dindmica simplificada del proceso de
sincronizacion de células. Sin embargo, a pesar de su capacidad para describir ciertos aspec-
tos del fenémeno estudiado, no ha logrado ajustarse satisfactoriamente al inico conjunto de
datos disponible para su validacién. Si bien el modelo propuesto no se ha desarrollado con el
objetivo de simular y comprender el proceso de sincronizacién de células para una tinica cepa
de levaduras, se esperaria que una vez ajustados los parametros con los datos experimentales,
no desaparecieran las oscilaciones sostenidas en la disponibilidad de oxigeno disuelto. Para
lograr este cometido se ha tenido en cuenta una serie de variables y parametros que influyen
en la dindmica de sincronizacion, y se ha formulado un sistema de ecuaciones que representa
estas interacciones.

A pesar de su fundamentacion teérica y la consideracion de factores relevantes, al com-
parar los resultados generados por el modelo con el inico conjunto de datos experimentales
recopilados, se ha observado cierta discrepancia, cuando se intenté encontrar un conjunto de
parametros fieles al inico conjunto de datos disponibles. Las simulaciones no lograron repro-
ducir de manera completamente fiel el comportamiento observado en la experimentacién por
Burnetti [9], lo que al menos deja un interrogante abierta respecto a la idoneidad del proceso
de ajuste de parametros.

Esta conclusién resalta la necesidad de realizar mejoras, en primer lugar, en la cantidad y
variedad de datos experimentales; en segundo lugar en la confeccién del protocolo de ajuste
de parametros, asi como también, pero en menor medida, la realizacién de modificaciones en
el modelo. Otra posibilidad es explorar enfoques alternativos de modelamiento matemaético,
con el propodsito de modelar desde otra perspectiva, la dindmica de sincronizacién celular.
También se hace relevante el considerar las caracteristicas y riqueza de los datos disponibles,
al momento de configurar un nuevo modelo.

5.2. Perspectivas

Ajustar el modelo a distintas cepas de levadura y al conjunto de datos obtenido
recientemente del estudio de B. Tu [70]

Encontrar nuevos conjuntos de datos experimentales de distintas cepas de levadura para ajus-
tar los pardmetros del modelo a cada uno de ellos. De acuerdo con el estudio de Burnetti [10]
existe acoplamiento YMC-CDC a lo largo de diferentes cepas. Se sugiere conseguir la data de
la evolucion en el tiempo de la concentracién de oxigeno disuelto de cada cepa y realizar un
ajuste de parametros para cada una de ellas.
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También seria pertinente ajustar en detalle el modelo al conjunto de datos del estudio de
B. Tu [70], el cual fue recientemente conseguido.

Desarrollar la hipétesis de la existencia de una subpoblacion de células en estado
desarrollo

Se sugiere desarrollar la hipétesis de la existencia de una subpoblacién de células en estado de
desarrollo que sea coherente con el modelo de Futcher-Burnetti [211, [9]. Esta hipétesis se basa
en observaciones y andlisis previos que sugieren la presencia de células en un estado particular
funcionalidad durante el proceso de sincronizacion. Para abordar esta perspectiva, se propone
diseniar experimentos especificos que permitan identificar y caracterizar las células en estado
de desarrollo dentro de la poblacién total. Estos experimentos podrian involucrar técnicas de
marcado y seguimiento celular, asi como anélisis de expresion génica o perfiles metabdlicos,
similares a los usados por Burnetti y Laxman et al.[9] 46].

Relacionar fase Gy (Estado de reposo de células no gemadas) con células refrac-
tarias

Seria pertinente responder a preguntas como jqué fraccién de las células en estado refracta-
rio se encuentran es estado de reposo? ;Qué fraccion de las células en estado refractario se
encuentran en estado de desarrollo? ;Cudl es la relaciéon de las células en estado Gg con las
células en estado de desarrollo?

Relacionar el estado de desarrollo celular con YMC

Existe evidencia de que el YMC actiia como controlador de las células que entran al estado de
compromiso, ya que estas parecen ingresar al HOC justo antes de comenzar CDC [9]. ;Cual
es la relacion especifica entre las fases del YMC y la dindamica de las células en estado de
desarrollo?

Explorar una dindmica que integre los estados de susceptibilidad y refractariedad

Considerar tres estados celulares: Refractarias, susceptibles y comprometidas para elaborar
un modelo matematico que incorpore el conocimiento disponible acerca del rol que juegan los
grupos de células que no acuden al llamado para iniciar CDC, en la produccién de oscilaciones
metabdlicas.
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Capitulo 6

Anexos

6.1. Cobdigos usados

Los codigos empleados para realizar las figuras y los analisis se encuentan en:
https://github.com/gferradac/Tesis-2.0.git
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