
Elaboración de un modelo predador-presa
con retardo aplicado a la especie Puma

concolor

Tesis entregada a la
Universidad Tecnológica Metropolitana

en cumplimiento parcial de los requisitos
para optar al grado de
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“Nuestra conexión con las personas es Musubi. El flujo del tiempo es Musubi.
Aśı que los hilos trenzados son una manera de representar esto mismo. Convergen
y toman forma. Se doblan, se enredan y a veces se desenredan; se rompen y se
reconectan. Aśı es el tiempo..”

– M. Shinkai, Kimi no Na Wa, 2016.
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1.3. Modelo de crecimiento loǵıstico . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Resumen

La especie nativa Puma concolor (Puma) es el mayor predador de los ecosiste-
mas cordilleranos chilenos y actualmente satisface los criterios establecidos en la
normativa chilena para ser catalogada como amenazada (MMA, 2020). La inves-
tigación de Rumiz (2010) indica que, al tratarse de un gran carńıvoro, los pumas
cumplen un rol fundamental en los ecosistemas, ya que al controlar del número de
herb́ıvoros permiten la regeneración de especies vegetales, es decir son reguladores
de otras poblaciones. Aśı mismo, este autor ha concluido que estos carńıvoros se
distribuyen en su hábitat según la disponibilidad, abundancia y vulnerabilidad de
sus presas. Muchos modelos predador-presa ignoran el tiempo para la conversión
de la biomasa consumida en biomasa del predador, lo que puede ser subsanado
agregando al modelo un factor de retardo que incorpore información de la pobla-
ción hace τ periodos de tiempo, transformando la ecuación del predador en una
Ecuación Diferencial con retardo. En el presente trabajo se definió un modelo ma-
temático que, mediante el uso de ecuaciones diferenciales con retardo, describe la
dinámica predador-presa para la especie P. concolor. Se asoció al predador una res-
puesta funcional Holling del tipo III (Holling, 1965) y un crecimiento determinado
por la ecuación de Nicholson (Berezansky et al., 2010), mientras que las presas fue-
ron modeladas con crecimiento loǵıstico. Se planteó un sistema para una especie
de predador en un parche, demostrando la existencia y unicidad de soluciones no
negativas y acotadas para condiciones iniciales no negativas, además de determi-
nar los respectivos equilibrios estacionarios del sistema. El análisis de estabilidad
de los equilibrios se vio limitado ante la dificultad de analizar las expresiones ob-
tenidas para las ecuaciones caracteŕısticas. Aún aśı, se definió la inestabilidad de
la solución trivial del sistema y bajo ciertas condiciones se mostró la estabilidad
absoluta de la solución con extinción de los predadores. Luego el modelo planteado
fue extendido a dos parches acoplados, entre los que se desplazan los predadores,
generando tres sistemas diferentes que, dependiendo del mecanismo o supuesto
que genera la migración, describen el movimiento de los pumas entre los parches.
El último mecanismo propuesto, es una migración que depende de la razón entre
las densidades de presas de ambos parches, la cual es una propuesta original de
este trabajo. Los sistemas se resolvieron mediante métodos numéricos, utilizan-
do los mismos valores iniciales pero con distintos valores para los parámetros, de
manera de apreciar como estos afectan el comportamiento predador y presas. Se
diferenciaron tres tipos distintos de soluciones, los cuales se denominaron como:
extinción de los predadores, equilibrios positivos y soluciones oscilatorias. Por últi-
mo, se evaluó el efecto de remoción sistemática de presas y predadores, además
de la limitación de la migración entre parches, donde se apreció que estas modifi-
caciones inciden en la dinámica normal del sistema. Las propuestas y avances de
este trabajo pueden ser un insumo para el desarrollo de futuras investigaciones
relacionadas con el Puma o sistemas predador-presa en general.
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Abstract

The native species Puma concolor (Puma) is the largest predator in Chilean An-
dean ecosystems and currently meets the criteria established in Chilean regulations
to be classified as threatened (MMA, 2020). The investigation of Rumiz (2010) in-
dicates that being a large carnivore, pumas play a fundamental role in ecosystems,
since by controlling the number of herbivores they allow the regeneration of plant
species, that is, they are regulators of other populations. Likewise, this author
has concluded that these carnivores are distributed in their habitat according to
the availability, abundance, and vulnerability of their prey. Many predator-prey
ignore the time for conversion of consumed biomass in predator models, which can
be remedied by adding to the model a delay factor that incorporates information
from the population τ periods ago of time, transforming the predator’s equation
into a delayed Differential Equation. In the present work, a mathematical model
was defined that, through the use of delayed differential equations, describes the
predator-prey dynamics for the species P. concolor. The predator was associated
with a type III Holling functional response (Holling, 1965) and a growth deter-
mined by the Nicholson equation (Berezansky et al., 2010), while the prey was
modeled with logistic growth. A system for a species of predator in a patch was
proposed, demonstrating the existence and uniqueness of non-negative and boun-
ded solutions for non-negative initial conditions, in addition to determining the
respective stationary equilibria of the system. The equilibrium stability analysis
was limited by the difficulty of analyzing the expressions obtained for the charac-
teristics. Still, the instability of the trivial solution of the system was defined and
under certain conditions, the absolute stability of the solution with the extinction
of predators was shown. Then the proposed model was extended to two coupled
patches, between which predators move, showing three different systems that, de-
pending on the mechanism or assumption that generates migration, describe the
movement of pumas between patches. The last proposed mechanism is a migration
that depends on the ratio between the prey densities of both patches, which is an
original proposal of this work. The systems were solved by means of numerical
methods, using the same initial values but with different values for the parame-
ters, in order to appreciate how these derive the predator and prey behavior. Three
different types of solutions were differentiated, which were named: extinction of
predators, positive equilibria, and oscillatory solutions. Finally, the effect of the
systematic elimination of prey and predators was evaluated, in addition to the
limitation of migration between patches, where it was observed that these modifi-
cations affect the normal dynamics of the system. The proposals and advances of
this work can be an input for the development of future research related to Puma
or predator-prey systems in general.
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Caṕıtulo 1

Introducción

La dinámica de poblaciones es una especialidad cient́ıfica que se ocupa del estudio de las pobla-
ciones modelando, mediante ecuaciones matemáticas, el comportamiento de estas para poder
realizar predicciones de sus cambios, conductas y consecuencias biológicas (EDAN, 2019). Aśı
mismo, la depredación se define generalmente como el consumo de todo o parte de un orga-
nismo viviente por otro, fenómeno que se modela a través de los sistemas predador-presa, los
cuales representan esta interacción que se da entre dos especies donde una (predador) se apro-
vecha de la otra (presa) (Smith and Smith, 2007). El método más básico para proyectar los
cambios en el tiempo de una población son las ecuaciones diferenciales, donde la idea central
es que a partir de un valor inicial para la población podemos usar un modelo para predecir
cuantos individuos habrá en el futuro, siendo una de sus aplicaciones el modelamiento de
relaciones interespećıficas (Kitzes, 2022).

En el presente caṕıtulo se entregan algunos antecedentes acerca de la especie de interés en este
estudio. Además de un resumen de los principales fundamentos del modelamiento de sistemas
predador-presa.

1.1. Antecedentes

1.1.1. El Puma

La especie nativa Puma concolor (Puma) es el mayor predador de los ecosistemas cordillera-
nos chilenos (Toledo and Surot, 2003). A nivel global esta especie se clasifica como “Cercana a
la Amenaza” y entre los factores que la amena en la actualidad destacan la caza, la expansión
inmobiliaria, el cambio de uso de suelo o el cambio climático (Ŕıos, 2009). Estudios previos
han estimado la densidad de pumas en distintas zonas del páıs, estando estas en un rango
de entre 0,75 y 2,5 individuos por 100 km2 (Guarda et al., 2017). Estos números muestran
el delicado estado de conservación del puma en nuestro páıs. De hecho la especie cumple los
criterios de la normativa chilena para ser catalogada como amenazada (MMA, 2020).
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Este carńıvoro tiene dentro de sus presas más comunes alces, ciervos, venados, castores, ardi-
llas, marmotas, lauchas, ratones, conejos, liebres y jabaĺıes, pero en Chile depreda particular-
mente lagomorfos (Conejos) y camélidos (Vicuñas y guanacos) (Toledo and Surot, 2003).

En cuanto a la ecoloǵıa de la especie y su comportamiento social, Rumiz (2010) indica que,
al tratarse de un gran carńıvoro, las poblaciones de pumas cumplen un rol clave en los eco-
sistemas, controlando el número de herb́ıvoros y de este modo permitiendo la regeneración
de especies vegetales, es decir, son reguladores de otras poblaciones. Adicionalmente, es se ha
concluido que para los pumas importa más la disponibilidad, abundancia y vulnerabilidad de
sus presas y no su comportamiento social para distribuirse en su hábitat (Rumiz, 2010). Este
mismo comportamiento también ha sido evidenciado en otros estudios e indica que los pumas
se desplazaŕıan a otros territorios en respuesta a una baja de las presas disponibles (Rumiz,
2010).

En una investigación reciente llevada a cabo en el marco del Proyecto GEF Montaña (Proyecto-
GEF, 2021), en la que se registró la actividad de dos pumas por 13 meses, se pudo detectar el
movimiento de estos espećımenes entre dos áreas distintas o “parches” de la zona central de
Chile. Este desplazamiento se realizó a través de una red de corredores biológicos de montaña
que conectan ecosistemas de la Región Metropolitana y la Región de Valparáıso (Ver Figura
1.1).

Figura 1.1: Desplazamiento de pumas monitoreados
(Proyecto-GEF, 2021)

La madurez sexual de las hembras se alcanza alrededor de los dos años, mientras que en los
machos esta se da al final de los tres años y el periodo de gestación de las cŕıas es de entre 90
y 95 d́ıas, teniendo camadas de entre dos y tres individuos cada dos años (Toledo and Surot,
2003).
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1.1.2. Modelos matemáticos

Fundamentos de los modelos predador-presa

Dentro de la literatura es posible encontrar distintos fundamentos para modelar la relación
entre predadores y presas (Berryman et al., 1995). La ley de acción de masas (LAM) es un
formalismo ampliamente utilizado para expresar las velocidades de reacción de un sistema
(Picó et al., 2015). Con la LAM se describe el comportamiento promedio de un sistema que
consta de muchos componentes que interactúan, tales como moléculas que reaccionan entre
śı (Ruth and Hannon, 1997). Aśı, al aplicar este concepto a un sistema predador-presa, se
establece que la tasa per cápita de crecimiento de la población de predadores es determina-
da enteramente por la densidad de la presa. En contraste a lo anterior, existen una serie de
sistemas predador-presa que se basan en la Ley de los rendimientos decrecientes, en donde se
establece que la tasa de crecimiento per cápita de los predadores está definida por la densidad
de presas o de la razón predador/presa (Berryman et al., 1995). La tasa de consumo, deno-
minada respuesta funcional, expresa la acción de los predadores en la tasa de crecimiento de
la población de presas, y representa la cantidad de presas que puede consumir un predador
en una unidad de tiempo (Garay-Gonzales, 2020). Dicho concepto se puede entender como la
capacidad predadora de un predador en función del cambio de la densidad de la presa (Badii
et al., 2013). El ecólogo C.S. Holling (1965) exploró este concepto y desarrolló una clasificación
basada en tres tipos generales de respuesta funcional, denominados respuestas funcionales de
Holling Tipo I, Tipo II y Tipo III (Ver Figura 1.2). A continuación una breve descripción de
estos.

Tipo I: Esta respuesta funcional se basa en el supuesto que el cambio en la densidad de
la población de predadores es proporcional a la densidad de la población de presas dispo-
nible. Con esto se puede entender que la tasa per cápita de consumo de los predadores es
proporcional a la densidad de presas, existiendo una cantidad umbral c, a partir de la cual
la tasa es constante. Este tipo de comportamiento es caracteŕıstico de especies marinas que
se alimentan del fitoplancton y zooplancton, donde el predador se alimenta filtrando el agua
hasta alcanzar el estado de saciedad (Badii et al., 2013). La ecuación que describe este tipo
de respuesta es la siguiente expresión

h(x) =


γx si 0 ≤ x < c,

γc si c > x,
(1.1)

donde x es la densidad de presas.

Tipo II: En este tipo de respuesta, el número de presas consumidas por el predador se
incrementa con una tasa decreciente, respecto a la densidad de la presa (Badii et al., 2013).
Esta respuesta funcional es llamada respuesta Monod de tipo hiperbólica, donde el parámetro
γ es la tasa máxima de consumo per cápita y a es la tasa de saturación media, es decir, la
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cantidad de presas en el que la tasa de depredación alcanza la mitad de su valor máximo
(Garay-Gonzales, 2020). Esta respuesta funcional es descrita por

h(x) = γx

a+ x
. (1.2)

Tipo III: Los predadores con este tipo de respuesta tienen una dieta basada es distintas
especies de presas y su consumo es proporcional a sus abundancias, cambiando a las especies
más abundantes y por tanto, permiten que las especies con menor densidad poblacional tengan
oportunidad de incrementar sus poblaciones de nuevo (Badii et al., 2013). Es una respuesta
sigmoidal que incluye la caracteŕıstica de que los predadores son ineficientes cuando los niveles
de presas son bajos, y descrita por

h(x) = γx2

a2 + x2 . (1.3)

Donde γ y a tienen el mismo sentido ecológico que en 1.2.

Figura 1.2: Gráficas de las respuestas funcionales de Holling
(Smith and Smith, 2007)

Estos tres tipos de respuestas funcionales son funciones crecientes respecto a la población
de presas (Garay-Gonzales, 2020). Un estudio con evidencia experimental determinó que el
puma presenta una respuesta funcional del tipo III (Soria Dı́az et al., 2014).
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Modelo de crecimiento loǵıstico

Cuando las poblaciones crecen hasta un punto en donde su aumento se ve limitado por los
recursos del medio ambiente (Capacidad de Carga K) (Figura 1.3), se dice que esta población
tiene un crecimiento que se denomina del tipo loǵıstico (Beckerman, 1993). Este tipo de
crecimiento se modela con la siguiente ecuación diferencial

dN

dt
= r

(
K −N

K

)
N, (1.4)

donde N es el número de individuos, dN/dt es la tasa de crecimiento de la población en el
tiempo, t representa el tiempo, r es un parámetro positivo que representa la tasa máxima de
crecimiento de la población y K es la capacidad de carga del ecosistema (tamaño poblacional
máximo que puede mantenerse en un ambiente dado).

Figura 1.3: Modelo de crecimiento loǵıstico
(Beckerman, 1993)

Modelo Lotka-Volterra

El modelo de predador-presa establecido por Lotka-Volterra (Matsuda et al., 1992) correspon-
de a un sistema de ecuaciones diferenciales de primer orden no lineal utilizado para describir
dinámicas en donde interactúan un predador y una presa. Como supuestos del modelo se
establece que las presas poseen suministro de comida ilimitado por tiempo definido, y se re-
producen con una tasa de crecimiento maltusiana (EDAN, 2019) que es minorada por efecto
de la predación. En el caso de los predadores, el crecimiento está definido por el tamaño
poblacional y su capacidad de consumir a las presas, menos el efecto debido a la tasa de mor-
talidad. Este modelo fue desarrollado en paralelo tanto por Alfred J. Lotka y Vito Volterra
(Entre 1925-1926), y surgió como una aplicación de la Ley de acción de masas para descri-
bir la dinámica predatoria de dos especies (Berryman et al., 1995). El modelo en su forma
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matemática está dado por 
dx

dt
= αx− βxy,

dy

dt
= δxy − γy,

(1.5)

donde y es el número de algún predador, x es el número de sus presas, dy/dt y dx/dt repre-
sentan las tasas crecimiento de las dos poblaciones en el tiempo, t representa el tiempo y α ,
β, γ y δ son parámetros (positivos) que representan las interacciones de las dos especies.

Ecuaciones diferenciales con retardo

Las ecuaciones diferenciales con retardo (EDR), corresponden a ecuaciones diferenciales fun-
cionales que tienen la particularidad que su derivada se da en términos de los valores de la
función en momentos anteriores, con lo que tienen varias aplicaciones para modelar y estudiar
situaciones de carácter biológico (Smith, 2011). En literatura es posible encontrar aplicaciones
de ecuaciones diferenciales con retardo para modelar interacciones entre predadores y presa
(Martin and Ruan, 2001; Fan and Li, 2007; Kar and Batabyal, 2009; Krisnawan et al., 2019;
Moussaoui et al., 2015; Garay-Gonzales, 2020).

Modelos tipo Nicholson: Este tipo de modelos tiene su origen en los estudios realiza-
dos por Robert May en la década de 1970, los cuales se basaron en los datos generados
previamente por Nicholson (Nicholson, 1954). May colaboró con George Oster, quien junto
con su ayudante, logró formalizar matemáticamente estas ideas en lo que comúnmente se co-
noce como la ecuación de Nicholson (Brillinger, 2012). Estudios como los de Gourley and Wu
(2006), Berezansky et al. (2010) y Ossandón and Sepúlveda (2021) son algunos ejemplos de
las aplicaciones de los modelos tipo Nicholson como lo son modelos de crecimiento de especies,
modelos de áreas marinas de protección y modelos de interacción de predador-presa.

En este tipo de modelos, la reposición de individuos de una población (Gurney et al., 1980)
está dada por

R(N) = PNe
−N
N0 , (1.6)

donde N es la cantidad de individuos de la población, R(N) es la función de reposición de
individuos (recruitment rate function), P es la tasa per cápita máxima de cŕıas y N0 es el
tamaño óptimo de reproducción para la población. De este modelo se puede derivar un modelo
que describe la variación de la población en el tiempo:

dN(t)
dt

= PN(t− TD)e− N(t−TD)
N0 − δN(t), (1.7)

donde N es la cantidad de individuos de la población, dN/dt representa la tasa crecimiento
de la población, t representa el tiempo, N0 es el tamaño óptimo para la población y TD es un
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factor de retardo del modelo.

Modelos predador-presa con retardo: En muchos modelos predador-presa se ignora el
tiempo de demora para la conversión de biomasa de presa consumida en biomasa del pre-
dador, ya sea en forma de crecimiento o reproducción del tamaño corporal (Amster, 2017).
Esta situación puede ser subsanada agregando al modelo un factor de “retardo” que incor-
pore información de la población hace τ periodos de tiempo, transformando la ecuación en
una Ecuación Diferencial con retardo. A continuación se presenta un sistema de ecuaciones
diferenciales para un sistema predador-presa desarrollado por Garay-Gonzales (2020):

dx

dt
= γ(x(t)) − h(x(t))y(t),

dy

dt
= −βy(t) + h(x(t− τ))y(t− τ),

(1.8)

donde y es el número de algún predador, x es el número de sus presas, dy/dt y dx/dt represen-
ta las tasas de crecimiento de las dos poblaciones en el tiempo, t representa el tiempo, γ(x(t))
corresponde a la función de crecimiento de la población de presas, h(x(t)) corresponde a la
respuesta funcional de los predadores a las presas, β corresponde a la tasa de mortalidad de
los predadores y τ corresponde al factor de retardo de los predadores.

En el presente trabajo se integraron una serie de elementos para definir un modelo matemático
que, mediante el uso de ecuaciones diferenciales con retardo, describa la dinámica predador-
presa para la especie P. concolor.

1.2. Planteamiento del Problema

Es posible encontrar una serie de publicaciones cient́ıficas y estudios recientes relacionados a
la temática de modelos predador-presa, donde destacan temas como el análisis de los patrones
temporales en función de distintas respuestas funcionales (Majumdar et al., 2022; Naik et al.,
2022a; Jana and Kumar Roy, 2022; Barman and Ghosh, 2022) y los Efectos Alle y del miedo
en las presas (Li et al., 2022; Naik et al., 2022b; Devi and Jana, 2022; Lan et al., 2022; Gökçe,
2022). Dentro de la literatura actual no existen modelos que integren las ecuaciones diferen-
ciales con retardo, las respuestas funcionales y los modelos tipos Nicholson para la especie P.
concolor. Dado que esta especie se encuentra con problemas de conservación, es importante
contar con herramientas que ayuden a simular distintos escenarios y cuantificar el nivel de afec-
tación y la respuesta de esta especie frente a distintas perturbaciones. Es en este contexto que
surge la pregunta acerca de la posibilidad de crear un modelo, enfocando su funcionamiento
según las caracteŕısticas predatorias del Puma. Además de esto, los antecedentes recolectados
del estudio de Rumiz (2010) y monitoreo llevado a cabo por el Proyecto-GEF (2021), dan
un fundamento para poder extender este modelo a uno con movimiento del predador entre
distintos parches.
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1.2.1. Objetivos

Objetivo General

Proponer un modelo matemático ecológico que describa la relación existente entre predador
(Puma concolor) y sus presas mediante el uso de los modelos tipo Nicholson y Loǵıstico bajo
distintos escenarios de parámetros poblacionales.

Objetivos Espećıficos

1. Definir un modelo matemático que integre la ecuación de Nicholson y el modelo Loǵıstico
para una dinámica predador-presa.

2. Analizar las propiedades cualitativas del modelo matemático planteado con uno y dos
parches.

3. Evaluar mediante simulaciones matemáticas los potenciales escenarios para la interac-
ción entre la población de Puma concolor y sus presas.
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Caṕıtulo 2

Marco teórico

En este caṕıtulo se presentarán algunos resultados fundamentales de la teoŕıa de Ecuacio-
nes Diferenciales con Retardo (EDR). Los principales aspectos a tratar son la existencia de
soluciones de EDR, los sistemas lineales de EDR, la ecuación caracteŕıstica, el principio de
estabilidad linealizada, un resultado de estabilidad absoluta, para concluir con un apartado
acerca de la resolución numérica de EDR en R. El presente caṕıtulo está inspirado en el texto
de Smith (2011), por lo que las demostraciones son omitidas. Para el lector interesado en
profundizar en la teoŕıa de EDR se recomienda el libro de Hale and Lunel (1993).

2.1. Existencia de soluciones de ecuaciones diferenciales con
retardo

Considere la ecuación diferencial con retardo no lineal

x′(t) = f(t, x(t), x(t− τ)) (2.1)

con retardo r > 0. Se asume que f(t, x, y) y fx(t, x, y) son funciones continuas sobre R3. Sea
s ∈ R dada y ϕ : [s − τ, s] 7→ R una función continua. Es de interés encontrar una solución
x(t) de la ecuación (2.1) con condición inicial

x(θ) = ϕ(θ), s− τ ≤ θ ≤ s. (2.2)

Note que se debe interpretar x′(s) como la derivada por la derecha en s. A continuación
se expone cómo resolver la ecuación (2.1) por el método de los pasos, que consiste en una
estrategia muy intuitiva. Consideremos el intervalo s ≤ t ≤ s + τ , sobre este intervalo x(t)
debe satisfacer el problema de valor inicial:

y′(t) = f(t, y(t), ϕ(t− τ)), y(θ) = ϕ(θ), s ≤ θ ≤ s+ τ.

De esta manera se obtiene una ecuación diferencial ordinaria (EDO), y puede ser estudiada
la existencia de soluciones (locales) utilizando la teoŕıa de EDOs. Si esta solución local y(t)
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existe para todo t tal que s ≤ t ≤ s + τ , entonces la solución x(t) = y(t) puede ser definida
sobre todo el intervalo [s− τ, s+ τ ] y es posible repetir el argumento anterior para extender
esta solución aún más a la derecha. De hecho, para s + τ ≤ t ≤ s + 2τ , una solución x(t) de
(2.1) y (2.2) debe satisfacer el PVI:

y′(t) = f(t, y(t), x(t− τ)), y(θ) = ϕ(θ), s ≤ θ ≤ s+ τ.

Una vez más, los resultados de existencia para este tipo de problemas garantizan la existencia
de una única solución, que se denota por x(t), definida sobre un subintervalo [s + τ, σ) ⊂
[s + τ, s + 2τ ], posiblemente el intervalo entero. De esta manera, x(t), ahora definida sobre
[s − r, σ) con σ > s + r, es una solución de (2.1) y (2.2). Si la solución existe sobre todo el
intervalo [s + τ, s + 2τ ] entonces es posible repetir este proceso para extender la solución al
intervalo [s+ 2τ, s+ 3τ ], o algún subintervalo de este.

Teorema 2.1. [(Smith, 2011, pp. 26)] Sean f(t, x, y) y fx(t, x, y) funciones continuas sobre
R3, s ∈ R, y sea φ : [s− τ , s] → R continua. Entonces existe δ > s y una única solución del
problema del valor inicial (2.3) sobre [s− τ , δ]:{

x′(t) = f(t, x(t), x(t− τ))
x(θ) = ϕ(θ), s− τ ≤ θ ≤ s.

(2.3)

Teorema 2.2. [(Smith, 2011, pp. 27)] Suponga que la función f : R×Rn
+ ×Rn

+ → R satisface
las hipótesis del Teorema 2.1, y

∀ i, t; ∀x, y ∈ Rn
+ se tiene que xi = 0 ⇒ fi(t, x, y) ⩾ 0. (2.4)

Si el dato inicial en (2.3) satisface ϕ ⩾ 0, entonces la correspondiente solución x(t) de (2.3)
satisface x(t) ⩾ 0 para todo t ⩾ s donde ella este definida.

Teorema 2.3. [(Smith, 2011, pp. 26)] Supongamos que f satisface las hipótesis del teorema
2.1 y sea x : [s − τ ,δ) → R la solución no continuable del problema de valor inicial 2.3. Si
δ < ∞ entonces:

ĺım
t→δ−

|x(t)| = +∞.

Las ecuaciones diferenciales con retardo pertenecen a una clase de ecuaciones diferenciales más
abstractas, denominado ecuaciones diferenciales funcionales. A continuación introduciremos
algunas definiciones de este contexto, principalmente porque su notación resulta muy útil.

Definición 2.1. Si x es una función definida, al menos, sobre [t − τ, t] → Rn, entonces
podemos definir una nueva función xt : [−τ, 0] → Rn por medio de la identidad

xt(σ) = x(t+ σ) para − τ ≤ σ ≤ 0.
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Note que xt se obtiene al considerar x(s) para t− τ ≤ s ≤ t y entonces trasladamos este seg-
mento x al intervalo [−τ, 0]. Si x es una función continua, entonces xt es una función continua
sobre [−τ, 0].

El conjunto C([−τ, 0],Rn) de todas las funciones continuas que van desde [−τ, 0] → Rn será
denotado por C. Si A es un subconjunto de Rn, entonces C([−τ, 0], A) será denotado por CA.
La notación xt es conveniente, pues permite escribir las EDRs de una forma abreviada, por
ejemplo podemos escribir la ecuación (2.1) en la forma

x′(t) = f(t, x(t), xt).

Se enfatizará en el problema de valor inicial para el sistema no autónomo

x′(t) = f(t, xt), t ≥ σ ,

xσ = ϕ ,
(2.5)

donde σ ∈ R es el tiempo inicial y ϕ ∈ C es el estado del sistema en el tiempo σ. Esto quiere
decir que

x(θ) = ϕ(θ), −τ ≤ θ ≤ 0.

Se denota por |x| a la norma de un vector x mientras que la norma de una función (vectorial)
en C será definida por

||ϕ|| = sup{|ϕ(θ)| : −r ≤ θ ≤ 0} .

Aparte de la continuidad de f , se asume que dicha función satisface una condición de Lipschitz
sobre cada subconjunto de R × C, es decir, para todo a, b ∈ R y M > 0, existe una constante
K tal que:

|f(t, ϕ) − f(t, ψ)| ≤ K||ϕ− ψ||, a ≤ t ≤ b, ||ϕ||, ||ψ|| ≤ M. (2.6)

Note que la constante K puede depender tanto de las constantes a, b como de M . A conti-
nuación se encontrará una solución de (2.5) sobre el intervalo [σ, σ + A] para algún A > 0.
Integrando a ambos lados y aplicando el teorema fundamental del cálculo, se obtiene que x(t)
debe ser una solución continua de la ecuación integral

x(t) = ϕ(0) +
∫ t

σ
f(s, xs)ds, σ ≤ t ≤ σ +A, (2.7)

y además x(θ) = ϕ(θ), σ − r ≤ θ ≤ σ. A continuación se enuncia un resultado de existencia
general.

Teorema 2.4. [(Smith, 2011, pp. 32)] Sea f una continua satisfaciendo la condición de
Lipschitz 2.1, σ ∈ R, y M > 0. Existe una constante A > 0, que depende solo de M tal que si
ϕ ∈ C satisface ||ϕ|| ≤ M , entonces existe una única solución x(t) = x(t, ϕ) de (2.5), definida
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sobre [σ − r, σ + A]. Además, si K es la constante de Lipschitz para f que le corrseponde a
[σ, σ +A] y M , entonces

máx
σ−r≤η≤σ+A

|x(η, ϕ) − x(η, ψ)| ≤ ||ϕ− ψ||eKA, ||ϕ||, ||ψ|| ≤ M. (2.8)

Remark 2.1. Si f satisface una condición de Lipschitz global, es decir, si K en puede ser
elegida independiente de a, b y M , entonces no necesitamos hacer restricciones sobre A en
el teorema 2.4. En otras palabras, su conclusión es válida para todo A > 0. En este caso, la
solución existe para todo t ≥ σ.

El concepto de estabilidad es fundamental para diversos fenómenos de evolución, y su concepto
opuesto se conoce cómo caos. En este caso es de interés estudiar la estabilidad de las soluciones
de EDRs y a continuación se introducirán algunas definiciones dadas en Hale and Lunel (1993).
Considerare el sistema de EDR dado por

x′(t) = f(t, xt) .

Suponga que satisface f(t, 0) = 0, t ∈ R siempre que x(t) = 0 es solución.

Definición 2.2. Se definen las siguientes clasificaciones para las soluciones x = 0:

La solución x = 0 es estable si para cada σ ∈ R y ϵ > 0, existe un δ = δ(σ, ϵ) > 0 tal
que ϕ ∈ C y ||ϕ|| < δ implican que ||xt(σ, ϕ)|| < ϵ, para t ≥ σ.

La solución x = 0 es asintóticamente estable si es estable y además, existe b(σ) > 0
tal que cada vez que ϕ ∈ C y ||ϕ|| < b(σ), entonces x(t, σ, ϕ) → 0, t → ∞.

Finalmente, se establece que x = 0 es inestable si ella no es estable.

La estabilidad de cualquier otra solución del sistema (2.5) puede ser definida, haciendo un
cambio de variables de manera que la solución en cuestión corresponda ahora a la solución
cero. Más precisamente, dada una solución y(t) de (2.5) definida sobre t ∈ R, sus propiedades
de estabilidad son las mismas que aquellas de la solución cero de la EDR

z′(t) = f(t, zt + yt) − f(t, yt) . (2.9)

En efecto, si x(t) es otra solución de (2.5) considere z(t) = x(t) − y(t) entonces zt = xt − yt, y
z satisface (2.9). El caso especial en que y(t) ≡ e, un equilibrio, es de mayor interes. En este
caso, sea ê ∈ C la función constante indénticamente igual a e. Entonces la ecuación (2.9) para
la perturbación z(t) = x(t) − e se convierte en

z′(t) = f(t, zt + ê) .

Note que este cambio de variables convierte el equilibrio y(t) = e en z(t) = 0.
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2.2. Sistemas Lineales Autónomos

Incluso cuando se está interesado solo en soluciones que tomen valores en el conjunto de los
números reales, es útil permitir a las soluciones que tomen valores complejos. Por tal motivo,
se modifica el espacio C por C = C([−r, 0],Cn). Un operador L : C → Cn es lineal si satisface:

L(aϕ+ bψ) = aL(ϕ) + bL(ψ), ϕ, ψ ∈ C, a, b ∈ C.

Se dice que L es acotado si existe K > 0 tal que

|L(ϕ)| ≤ K||ϕ||, ϕ ∈ C.

El objetivo en este caṕıtulo es considerar algunos aspectos de la EDR lineal

x′(t) = L(xt). (2.10)

Se asumirá a lo largo de este trabajo que L es un operador lineal y acotado. Un ejemplo
importante es el caso con retardo discreto. Considere A y B matrices de tamaño n × n y se
define:

L(ϕ) = Aϕ(0) +Bϕ(−τ).
Entonces

|L(ϕ)| ≤ |A||ϕ(0)| + |B||ϕ(−τ)| ≤ (|A| + |B|)||ϕ||,

aśı L es acotado. Luego la ecuación (2.10) toma la forma

x′(t) = Ax(t) +Bx(t− τ). (2.11)

La ecuación (2.10) corresponde a un sistema autónomo, por lo tanto se restringe a una con-
dición inicial definiendo los valores de x sobre [−τ, 0], es decir:

x(t) = ϕ(t), −r ≤ t ≤ 0, ϕ ∈ C. (2.12)

Debido a que L es un operador lineal acotado, este satisface la siguiente condición de Lipschitz
global

|L(ϕ) − L(ψ)| = |L(ϕ− ψ)| ≤ L||ϕ− ψ||,

para algún L > 0.

Consecuentemente, el teorema 2.4 aplica para el PVI (2.10) y (2.12). Luego, existe una única
solución maximal x : [−r,∞) → Cn definida para todo t ≥ 0. Los sistemas lineales de la forma
(2.10) cumplen el principio de superposición: una combinación lineal de soluciones es también
una solución.

Proposición 2.1. [(Smith, 2011, pp. 42)] Sea x(t, ϕ) a la solución del PVI (2.10) y (2.12).
Entonces la función que lleva ϕ en x(t, ϕ) es lineal:

x(t, aϕ+ bψ) = ax(t, ϕ) + bx(t, ψ), t ≥ 0, ϕ, ψ ∈ C, a, b ∈ C.
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2.3. La Ecuación Caracteŕıstica

Son de interés las soluciones de (2.10) que tengan la forma

x(t) = eλtv, v ̸= 0,

donde λ es un número complejo y v es un vector cuyas componentes son también números
complejos.

Es útil introducir la notación expλ para la función continua definida en [−τ, 0] por medio
de la identidad

expλ(θ) = eλθ, θ ∈ [−τ, 0].

Usando esta notación, se observa que el estado xt ∈ C([−τ, 0];Cn) correspondiente a x(t) es
xt = eλt(expλ)v. En efecto,

xt(θ) = x(t+ θ) = eλ(t+θ)v = eλteλθv = eλt expλ(θ)v, θ ∈ [−τ, 0].

Para que x(t) sea una solución, se debe tener

x′(t) = λeλtv = L(xt) = eλtL(expλ v)

o
λv = L(expλ v).

Escribiendo v = ∑
j vjej donde {ej}j es la base canónica de Cn y vj ∈ C, se obtiene que

L(expλ v) = L(expλ

∑
j

vjej) =
∑

j

vjL(expλ ej).

Por otra parte, se define una matriz Lλ ∈ Cn×n cuyas columnas vienen dadas por L(expλ ej) ∈
Cn, en otras palabras

Lλ =
[
L(expλ e1) L(expλ e2) · · · L(expλ en)

]
.

Aśı L(expλ v) = Lλv. Luego
λv = L(expλ v) = Lλv,

λv − Lλv = 0

(λI − Lλ)v = 0

y se tiene que x(t) = eλtv es una solución distinta de cero de la EDR lineal (2.10) si λ es
solución de la ecuación caracteŕıstica:

det (λI − Lλ) = 0. (2.13)
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En este caso, v ̸= 0 debe pertenecer al kernel del operador λI −Lλ. Usualmente les llamamos
valor propio a cada número complejo λ que satisfaga (2.13). Para el caso especial de la ecuación
(2.11) se tiene que L(xt) = Axt(0) +Bxt(−r) y por lo tanto

λv = L(expλ v) = Av +Be−λrv.

Esto permite expresar su ecuación caracteŕıstica como:

det
(
λI −A− e−λrB

)
= 0. (2.14)

2.3.1. Funciones Anaĺıticas

El plano complejo C es el conjunto de todos los números complejos z = x+iy, tal que x, y ∈ R.
Como es usual la parte real e imaginaria de z se definen, respectivamente, por R(z) = x y
I(z) = y. La norma de z es definida como |z| = (x2 + y2)1/2. El conjugado complejo de z es
z = x− iy.

Una función de variable compleja que toma valores complejos f : D → C, donde D ⊂ C,
puede representarse como:

w = f(z) = u(z) + iv(z) = u(x, y) + iv(x, y),
donde u y v son funciones que toman valores reales definidas sobre el dominio D, que ahora
puede verse como un subconjunto del plano (x, y).
Definición 2.3. Se entiende que f es anaĺıtica sobre D si D es un conjunto abierto y f es
diferenciable en cada punto de D, en el sentido que

f ′(z0) = ĺım
z→z0

f(z) − f(z0)
z − z0

existe en cada punto z0 ∈ D. Si f es anaĺıtica sobre todo C entonces se dice que f es una
función entera.
El teorema integral de Cauchy es un hecho destacable sobre funciones anaĺıticas. A continua-
ción se mencionan algunas de sus consecuencias:

1. Una función anaĺıtica es infinitamente diferenciable.

2. La expansión en serie de Taylor de una función anaĺıtica converge y representa dicha
función.

3. Una función anaĺıtica que no es idénticamente cero en su dominio (conexo) tiene ceros
aislados.

Proposición 2.2. [(Smith, 2011, pp. 151)] Sea f anaĺıtica sobre un dominio conexo D, no
idénticamente cero en D, y sea K un subconjunto cerrado y acotado de D. Entonces f tiene a
lo más finitos ceros en K. Si f es una función entera, entonces ella tiene a lo más numerables
ceros; y si ella tiene infinitos ceros y {zn}n∈N es una enumeración de ellos, entonces |zn| → ∞
cuando n → ∞.
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2.3.2. Propiedades de la ecuación caracteŕıstica

Esta sección comienza notando que h, definida por h(λ) = det(λI − Lλ), es una función
anaĺıtica definida para todo λ ∈ C, esto es, una función entera, anaĺıtica en todo el plano
complejo.

Lema 2.1. [(Smith, 2011, pp. 46)] h(λ) = det(λI − Lλ) es una función entera.

A continuación se mencionan las propiedades que tiene h(λ) debido a que se trata de una
función entera no trivial:

1. Cada ráız caracteŕıstica tiene orden finito.

2. Existen a lo sumo numerables ráıces caracteŕısticas.

3. El conjunto de ráıces caracteŕısticas no tiene punto de acumulación finito.

Un hecho destacable es que hay un número finito de ráıces caracteŕısticas con parte real
positiva.

Lema 2.2. [(Smith, 2011, pp. 46)] Dada una constante σ ∈ R, existen a lo sumo un número
finito de ráıces caracteŕısticas que cumplen R(λ) > σ. Si existen infinitas ráıces caracteŕısticas
distintas {λn}n, entonces

R(λn) → −∞, n → ∞.

Una consecuencia importante del lema 2.2 es que existe σ ∈ R y un conjunto finito de ráices
caracteŕısticas dominantes que tienen parte real igual a σ mientras que todas las otras ráıces
tienen parte real estrictamente menor que σ. En las aplicaciones, las ráıces caracteŕısticas
complejas vienen en pares conjugados.

Proposición 2.3. (Smith, 2011, pp. 47) Suponga que L mapea funciones reales en vectores
reales: L(C([−τ, 0],Rn)) ⊂ Rn. Entonces λ es una ráız caracteŕıstica si y solo si λ es una ráız
caracteŕıstica.

El resultado principal de esta sección tiene relación con la estabilidad de la solución x = 0 del
sistema (2.10).

Teorema 2.5. [(Smith, 2011, pp. 47)] Suponga que R(λ) < µ para toda ráız caracteŕıstica λ.
Entonces existe K > 0 tal que para todo ϕ ∈ C

|x(t, ϕ)| ≤ Keµt||ϕ||, t ≥ 0, (2.15)

donde x(t, ϕ) es la solución de (2.10) con condición inicial x0 = ϕ. En particular, x = 0
es una solución de (2.10) asintóticamente estable si R(λ) < 0 para toda ráız caracteŕıstica;
mientras que es inestable si existe al menos una ráız que cumpla R(λ) > 0.
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A modo de conclusión, para determinar la estabilidad o inestabilidad de los equilibrios de un
sistema de ecuaciones diferenciales lineales es fundamental conocer las ráıces caracteŕısticas,
sin embargo en el caso de los sistemas de ecuaciones diferenciales lineales con retardo esto
se vuelve más dif́ıcil aún que en el caso ordinario. En la monograf́ıa de Michiels and Nicu-
lescu (2007) se describen métodos computacionales para determinar las ráıces caracteŕısticas
cŕıticas, aquellas que tienen la mayor parte real.

2.4. Principio de Estabilidad Linealizada

Considere la ecuación diferencial funcional no lineal

x′(t) = f(xt). (2.16)

Entonces x(t) = x0 ∈ Rn es una solución de estado estacionario de (2.16) si y solo si

f(x̂0) = 0,

donde x̂0 ∈ C es la función constantemente igual al vector x0. Si x(t) es una solución de (2.16)
y considere

x(t) = x0 + y(t)
entonces y(t) satisface

y′(t) = f(x̂0 + yt). (2.17)
Se quiere comprender el comportamiento de las soluciones de (2.16) con condiciones iniciales
cercanas a x̂0 y para esto, es suficiente comprender el comportamiento de las soluciones de
(2.17) con condiciones iniciales cercanas a y = 0. Asumiendo que

f(x̂0 + ϕ) = L(ϕ) + g(ϕ), ϕ ∈ C, (2.18)

donde L : C → Rn es una función lineal y acotada y g : C → Rn es de orden superior en el
sentido que

ĺım
ϕ→0

|g(ϕ)|
||ϕ||

= 0. (2.19)

Observe que 2.19 es equivalente, a que para cada ϵ > 0, existe δ > 0 tal que

||ϕ|| < δ ⇒ |g(ϕ)| < ϵ||ϕ||.

El sistema lineal asociado a (2.17)
z′(t) = L(zt), (2.20)

se denomina la ecuación linealizada o la ecuación variacional alrededor del equilibrio x̂0. De-
bemos estudiarla sobre el espacio complejo C([−τ, 0],Cn).

El siguiente es el resultado principal de esta sección. Su demostración puede encontrarse
en el libro de Hale and Lunel (1993).
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Teorema 2.6. [(Smith, 2011, pp. 55)] Denotemos ∆(λ) = 0 la ecuación caracteŕıstica de
(2.20) y suponga que

−σ := máx
∆(λ)=0

R(λ) < 0.

Entonces x̂0 es una solución de estacionaria asintóticamente estable de (2.16). Es decir, existe
b > 0 tal que

||ϕ− x̂0|| < b ⇒ ||xt(ϕ) − x̂0|| ≤ K||ϕ− x̂0||e− σt
2 , t ≥ 0.

Si R(λ) > 0 para alguna ráız caracteŕıstica, entonces x̂0 es inestable.

Consideremos el siguiente caso especial de (2.16)

x′(t) = F (x(t), x(t− r)), (2.21)

donde F : D×D → Rn es continuamente diferenciable y D ⊂ Rn es abierto. Si F (x0, x0) = 0
para algún x0 ∈ D, entonces x(t) = x0, t ∈ R es una solución. Aśı f(ϕ) = F (ϕ(0), ϕ(−τ)) y
(2.18) se convierta en estacionaria de 2.21

f(x̂0 + ϕ) = Aϕ(0) +Bϕ(−τ) +G(ϕ(0), ϕ(−τ)),

donde A = Fx(x0, x0) y B = Fy(x0, x0). Por lo tanto, el sistema linealizado alrededor de
x = x0 para (2.21) es

z′(t) = Az(t) +Bz(t− τ). (2.22)

2.5. Estabilidad absoluta

Con frecuencia, al estudiar ecuaciones diferenciales con retardo lineales, la ecuación carac-
teŕıstica asociada toma la forma

p(λ) + q(λ)e−τλ = 0, (2.23)

donde p y q son polinomios con coeficientes reales y r > 0 es el retardo. Por ejemplo, la
ecuación caracteŕıstica para un sistema planar (o bidimensional) tiene esta propiedad cuando
det(B) = 0. Este es un caso t́ıpico pues con frecuencia una ecuación tiene solo un argumento
retardado. En general, p tiene un grado más alto que q. Brauer (1987) probó el siguiente
resultado:

Proposición 2.4. [Brauer (1987)] Sean p, q polinomios con coeficientes complejos. Suponga
que:

1. p(λ) ̸= 0, R(λ) ≥ 0.

2. p(−iy) = p(iy), q(−iy) = q(iy) para 0 ≤ y < ∞.

3. |q(iy)| < |p(iy)|, 0 ≤ y < ∞.

20



4. ĺım|λ|→∞ , R(λ)≥0 |q(λ)/p(λ)| = 0.

Entonces R(λ) < 0, para toda ráız λ y todo r ≥ 0.

La conclusión de la proposición 4.1.5 se denomina estabilidad absoluta, puesto que la estabi-
lidad es válida para cualquier valor del retardo.

2.6. Ecuaciones diferenciales con retardo en R

La libreŕıa deSolve de R resuelve las Ecuaciones Diferenciales con Retardo (EDRs) aplicando
el mismo procedimiento que utiliza en las Ecuaciones Diferenciales Ordinarias (EDOs), con
la excepción de que en las EDRs presentan un término de “memoria” que trabaja con valores
pasados de la variable dependiente o de sus derivadas (Soetaert et al., 2012). En deSolve, está
implementada la función dede, que puede integrar numericamente una EDR y a la vez tener a
disposición los valores pasados de los estados y sus derivadas pasadas a través de las funciones
lagvalue y lagderivs respectivamente. Una sintaxis simplificada de estas funciones es:

dede (y, times, func, parms, method, ...)
lagvalue (t, nr)
lagderiv (t, nr)

El argumento t, de las funciones lagvalue y lagderiv, corresponde el tiempo para el que se
desea el valor rezagado; este no debe ser mayor que el tiempo de simulación actual ni menor
que el tiempo de simulación inicial. Mientras, nr es el número del valor rezagado. Si no se
espećıfica un valor para nr, se devuelven todas las variables de estado o derivadas. Dentro del
funcionamiento de dede se pueden utilizar diferentes solvers que usan una serie de métodos
de integración, donde los más destacables son: Método de Adams, Método BDF y Método de
Runge-Kutta. El solver a utilizar se ingresa como el argumento method de la función dede.
Cuando no se espećıfica un solver en particular, dede utiliza por defecto lsoda, que trabaja
cambiando automáticamente entre métodos de solución de PVI ŕıgidos y no ŕıgidos. Esto sig-
nifica que el usuario no tiene que determinar si el problema es ŕıgido o no, y el solver elegirá
automáticamente el método apropiado.

Cabe mencionar que esta función no incluye métodos para lidiar con retrasos que son más
pequeños que el tamaño del paso con el que implementa. Por esta razón, solo puede resolver
ecuaciones diferenciales de retardos simples.

Como ejemplo, se presenta la siguiente EDR con retardo discreto

y′ = −y(t− 1) (2.24)
y(t) = 1, t ∈ [−1, 0],

en donde la derivada de la solución en t depende del valor de la solución en t− 1. La imple-
mentación de la solución de la ecuación (2.24) en R, utilizando dede, corresponde a
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library(deSolve)
DDE1 <- function(t, y, parms) {

tlag <- t - 1
if (tlag <= 0)

ylag <- 1
else

ylag <- lagvalue(tlag)
list(dy = - ylag, ylag = ylag)

}
yinit <- 1
times <- seq(from = 0, to = 10, by = 0.1)
yout <- dede(y = yinit, times = times, func = DDE1, parms = NULL).

En este ejemplo, la variable yout, almacena la serie de tiempo de los valores que toma y(t) en
el intervalo de [0; 10], en pasos de 0.1 unidades de tiempo.

Para mayores detalles acerca de la resolución de EDRs en R, se recomienda visitar el Caṕıtulo
7 de Soetaert et al. (2012).
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Caṕıtulo 3

Metodoloǵıa

El desarrollo de esta investigación involucró una serie de pasos secuenciales que permitieron
alcanzar el objetivo de proponer un modelo matemático ecológico que describa la relación
existente entre el Puma y sus presas, mediante el uso de los modelos tipo Nicholson y Loǵısti-
co bajo distintos escenarios de parámetros poblacionales. Primero se realizó una búsqueda
de los antecedentes bibliográficos que hicieron posible desarrollar el modelo planteado. Lue-
go se integraron los distintos elementos en un modelo y se describieron sus componentes y
caracteŕısticas principales, demostrando algunas propiedades fundamentales de este. Una vez
validado este modelo se realizaron simulaciones con diferentes combinaciones de parámetros,
lo que permitió caracterizar diferentes comportamientos a largo plazo de las soluciones. Pos-
teriormente se extendió el modelo predador-presa para un escenario en donde existen dos
parches interconectados por corredores biológicos, los cuales permiten la migración de pumas
entre estos. Para este modelo extendido se realizaron simulaciones y se clasificaron los resulta-
do obtenidos. Luego de obtener una caracterización del comportamiento de las soluciones del
modelo, se procedió a plantear escenarios espećıficos en donde se realizaron perturbaciones en
el sistema, contrastando los resultados con la respuesta del sistema sin esta modificación. El
diagrama de la Figura 3.1, esquematiza la metodoloǵıa utilizada.

3.1. Caracteŕısticas del modelo

Se formuló un modelo predador-presa en base a los antecedentes recopilados durante la revi-
sión bibliográfica. Este modelo se ajusta a las caracteŕısticas ecológicas de P. concolor consi-
derando sus hábitos predatorios, crecimiento y dinámica de las presas. Las caracteŕısticas del
modelo resultante fueron discutidas según los atributos claves de credibilidad de los modelos
identificados por (Berryman et al., 1995):

Atributo 1: La tasa de incremento per cápita de las presas disminuye con la densidad de
predadores, es decir, hay un efecto negativo de los predadores sobre la presa.
Atributo 2: La tasa de aumento per cápita del predador debeŕıa aumentar con la densidad
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Figura 3.1: Diagrama de la metodoloǵıa del estudio

de presas: es decir hay un efecto positivo de las presas sobre los predadores.
Atributo 3: Los predadores deben tener apetitos finitos y en consecuencia tasas máximas de
reproducción.
Atributo 4: Cuando la comida u otros recursos son escasos, relativos a la densidad de po-
blación, la tasa per cápita de incremento de predadores debeŕıan disminuir con el incremento
de la densidad de predadores.

Estas caracteŕısticas ayudan a validar que el modelo tenga un comportamiento razonable
desde un punto de vista biológico y ecológico.

3.2. Existencia de soluciones no negativas

Siguiendo la metodoloǵıa planteada por Smith (2011), se demostró la existencia de soluciones
del modelo. En particular un problema de valor inicial con dato inicial no negativo genera
una solución no negativa.
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3.3. Análisis de soluciones de estado estacionario

Se determinaron las soluciones estacionarias, las cuales fueron estudiadas cualitativamente
mediante la linealización del modelo y posterior análisis de la ecuación caracteŕıstica asociada
(Brauer, 1987). La aplicación de esta teoŕıa se vio limitada en los casos en que las ecuaciones
caracteŕısticas del sistema de ecuaciones diferenciales eran dadas por expresiones algebraicas
con muchos términos, puesto que su resolución por las v́ıas tradicionales hubiese implicado
tiempos que sobrepasaŕıan los plazos definidos para el desarrollo de esta investigación. Aún
aśı, fue posible plantear condiciones de estabilidad absoluta para uno de los equilibrios del
sistema. Las ecuaciones matemáticas de los puntos de equilibrio de mayor dificultad se resol-
vieron computacionalmente utilizando la libreŕıa sympy de Python Meurer et al. (2017). Una
limitación de este trabajo que podŕıa abordarse en futuros estudios, es realizar un análisis de
bifurcaciones de Hopf que complementaŕıa el análisis de estabilidad.

3.4. Extensión del modelo a dos parches

Se extendió el problema a dos parches, ampliando el sistema a uno de cuatro ecuaciones
diferenciales. Para lograr esto se asoció una ecuación para la variación temporal de presas y
otra para la variación temporal del predador para cada uno de los parches. Se incorporaron
tres funciones distintas para modelar el flujo migratorio entre los parches. La primera función
considera una migración constante entre los parches, similar a lo que se plantea en el modelo
de Levins (1969). La segunda esta basada en una función denso dependiente, desarrollado por
Huang and Diekmann (2001). La última función es una propuesta original de este trabajo,
una migración regulada por una relación radio dependiente entre las poblaciones de presas de
los parches.

3.5. Simulación

Las simulaciones matemáticas para los modelos con un parche y con dos parches, se realizaron
para analizar el comportamiento del predador y la presa bajo distintos valores de los paráme-
tros. Estas simulaciones se ilustraron mediante el uso de las libreŕıas ggplot2 (Wickham et al.,
2016) y reshape (Wickham and Wickham, 2015) del programa R. Las ecuaciones diferenciales
con retardo fueron resueltas mediante las funciones disponibles en la libreŕıa deSolve de R
(Soetaert et al., 2015). Se propuso un valor para el retardo τ del modelo de 27 meses, que con-
sidera el tiempo de gestación y periodo de desarrollo de la especie, mientras que se consideró
un valor inicial de un individuo de predador en 100 km2 y 200 presas en 100 km2. Para las
simulaciones del modelo extendido, se incorporó un segundo parche con una densidad inicial
de predadores de dos pumas por km2, mientras que para las presas se asignó una población
de 300 presas por cada 100 km2. Debido a la diferencia de magnitudes de las densidades de
predador y presas, estas últimas fueron representadas en escala logaŕıtmica.
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3.6. Escenarios potenciales

Para complementar los análisis realizados se incluyó la evaluación de tres escenarios potencia-
les asociados a alteraciones y amenazas reales a las que se encuentran sometidos los ecosistemas
en donde habita el Puma. Los escenarios propuestos fueron:

a) Reducción de la población de presas: Se realiza una remoción sistemática de un porcen-
taje de las presas cuando estas sobrepasan un cierto umbral.

b) Reducción de la población de predadores: Se realiza una remoción sistemática de un
porcentaje de los pumas cuando estos sobrepasan un cierto umbral.

c) Limitación de la migración: En base al modelo de dos parches con migración radiode-
pendiente, se aplica un factor al componente migratorio del sistema que reduce su valor
a un 30 %.

Para realizar los análisis de los dos primeros escenarios se siguió el procedimiento numérico
que se plantea en el subcaṕıtulo 7.6 del libro de Soetaert et al. (2012).
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Caṕıtulo 4

Resultados y Discusiones

En este caṕıtulo se muestran los principales resultados de este estudio, en donde se propone
un modelo matemático ecológico que describe la relación existente entre el Puma y sus presas,
mediante el uso de los modelos tipo Nicholson y Loǵıstico junto con distintos escenarios de
parámetros poblacionales. Comienza con el estudio del modelo propuesto para un parche, sus
propiedades cualitativas y las principales simulaciones numéricas realizadas. Luego se analiza
el modelo expandido a dos parches con las variantes de mecanismos migratorios, comparando
las distintas simulaciones que se hicieron para cada uno ellos. Por último, se expone el análisis
de los distintos escenarios potenciales aplicado a uno de los modelos de dos parches.

4.1. Estudio del modelo con un Parche

Se determinó y se estudiaron las caracteŕısticas de un modelo de ecuaciones diferenciales con
retardo, en donde se asoció al predador una respuesta funcional Holling del tipo III y un
crecimiento determinado por la ecuación de Nicholson. Este tipo de ecuación, al incorporar
una función de reclutamiento tipo Ricker, le incorpora al modelo el efecto de la competen-
cia intraespećıfica que se genera en los predadores, y de manera intŕınseca, la capacidad de
carga del ecosistema. El crecimiento poblacional de las presas se modeló con una ecuación de
crecimiento del tipo loǵıstico.

4.1.1. Formulación del modelo

Partiendo del modelo de Garay-Gonzales (2020) representado en la ecuación (1.8) e incor-
porando los elementos mencionados con anterioridad, se llegó a la deducción del siguiente
modelo predador-presa:
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

dx

dt
= r

(
K − x(t)

K

)
x(t) − γx(t)2

a2 + x(t)2 y(t),

dy

dt
= −βy(t) + γx(t− τ)2

a2 + x(t− τ)2 y(t− τ)e
−y(t−τ)

N ,

t ≥ 0 (4.1)

donde τ es un retardo discreto, x(t) representa la población de presas en el instante t e y(t)
la población de predadores adultos en el instante t, dx/dt y dy/dt representan las tasas cre-

cimiento de las dos poblaciones en el tiempo, n(x) = r

(
K − x

K

)
corresponde a la función de

crecimiento de la población de presas, h(x) = γx2

a2 + x2 corresponde a la respuesta funcional
de los predadores a las presas y β representa a la tasa de mortalidad de los predadores. Los
parámetros presentes en el modelo son los siguientes:

Cuadro 4.1: Parámetros de simulación en el modelo y su definición ecológica 4.1

Parámetros Descripción
r Tasa de reproducción de las presas
K Capacidad de carga
a Tasa de saturación media predador
γ Tasa máxima de consumo per cápita predador
β Tasa de mortalidad predador
N Tamaño óptimo de reproducción para la población del predador

Para simplificar la notación del sistema denotaremos, como es usual en la literatura de ecua-
ciones diferenciales con retardo, x(t) = x, y(t) = y, x(t− τ) = xt y y(t− τ) = yt, expresando
el sistema como: 

dx

dt
= r

(
K − x

K

)
x− γx2

a2 + x2 y,

dy

dt
= −βy + γx2

t

a2 + x2
t

yte
−yt
N .

t ≥ 0 (4.2)

4.1.2. Discusión acerca del modelo a priori

Según los criterios de credibilidad de los modelos identificados por Berryman et al. (1995),
se puede decir que los predadores si tienen un efecto negativo sobre las presas, ya que en
términos generales, al aumentar su número disminuye el de las presas. Aśı mismo, al aumentar
la densidad de las presas se tiene un incremento en la tasa de aumento per cápita de los
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predadores. Los predadores presentan una tasa de reproducción acotada, que alcanza un
máximo para un tamaño óptimo de la población, y para valores mayores de la población esta
tasa va disminuyendo a medida que se densifica su población.

4.1.3. Existencia y unicidad de soluciones no negativas

Proposición 4.1. El sistema (4.1) admite una única solución maximal para cada condición
inicial (ϕ, ψ) ∈ C([−r, 0],R2).

Demostración. Se definen los vectores W y Z en R2 dados por:

W =
(
w1
w2

)
, Z =

(
z1
z2

)
.

Luego, el lado derecho de (4.2) puede escribirse como:

f(W,Z) =
(
f1(W,Z)
f2(W,Z)

)
=


r(K − w1

K
)w1 − γw2

1
a2 + w2

1
w2

−βw2 + γz2
1

a2 + z2
1
z2e

−z2
N

 . (4.3)

Al inspeccionar la función (4.3), esta es continua sobre R4 ya que su primer término es del tipo
polinomial y el segundo y tercero son racionales pero divididos por expresiones que siempre
serán distintas de 0, por lo que no presentan discontinuidad. La matriz jacobiana fW (W,Z)
corresponde a la siguiente expresión:

fW (W,Z) =
(

∂f1
∂w1

∂f1
∂w2

∂f2
∂w1

∂f2
∂w2

)
=

 r
K (K − 2w1) − 2γa2w1w2

(a2+w2
1)2

γw2
1

a2+w2
1

0 −β

 . (4.4)

Notemos que la matriz (4.4) solo depende de w1 y w2. Además esta es continua sobre R2, por
lo que al aplicar el Teorema 2.1 y se puede asegurar la existencia de soluciones locales del
problema de valor inicial de la forma del sistema (2.3) en un intervalos sobre [s− r, δ].

Proposición 4.2. Dada una condición inicial (ϕ, ψ) ∈ C([−r, 0],R2) no negativa, entonces
la solución maximal del sistema (4.1) asociada (ϕ, ψ) es también no negativa.

Demostración. Sea x(θ) = ϕ(θ) ⩾ 0 la condición inicial para el sistema de (4.1). A continua-
ción se verifica que f(W,Z) satisface la condición (2.4) del teorema 2.2, para mayor claridad
esta se reescribe como:

∀ i, t; ∀W, Z ∈ R2
+ se tiene que wi = 0 ⇒ fi(W,Z) ⩾ 0.

En efecto, si i = 1, y W,Z ∈ R2
+ y w1 = 0, entonces
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f1(W,Z) =
[
r

(
K − w1
K

)
w1 − γx2

1
a2 + w2

1

] ∣∣∣∣∣
w1=0

= 0.

Por otra parte, si i = 2, y W,Z ∈ R2
+ y w2 = 0, entonces

f2(W,Z) =
[
−βw2 + γz2

1
a2 + z2

1
z2e

−z2
N

] ∣∣∣∣∣
w2=0

= γz2
1

a2 + z2
1
z2e

−z2
N ≥ 0,

pues la expresión racional asegura ser no negativa ya que su numerador es la multiplicación
de un término γ mayor que cero y un término cuadrático, mientras que su denominador es
siempre positivo ya que es el resultado de la suma de dos términos cuadráticos no negativos.
Aśı mismo, el término exponencial también es un termino no negativo, con lo que se puede
asegurar que f cumple las condiciones del Teorema 2.2, lo que garantiza que a partir de un
valor inicial x(θ) = ϕ(θ) ⩾ 0 se obtendrán soluciones no negativas.

Proposición 4.3. Las soluciones del sistema (4.1) que se obtienen a partir de una condición
inicial (ϕ, ψ) ∈ C([−r, 0],R2) no negativa, están bien definidas para todo t ≥ 0.

Demostración. La demostración se realizará por reducción al absurdo. La única solución del
sistema (4.1) con condición inicial (ϕ, ψ) ∈ C([−r, 0],R2

+) está definida sobre el intervalo
maximal [−r, δ). Suponga que 0 < δ < +∞. Como δ < ∞ entonces sigue del Teorema 2.3 que

ĺım
t→δ−

|(x(t), y(t))| = ∞. (4.5)

Por otro lado, de la ecuación 4.1 se conoce que:

dx

dt
= r

(
K − x

K

)
x− γx2

a2 + x2 y.

Ahora, gracias a la Proposición 4.2, podemos acotar el valor para dx

dt
eliminando los términos

negativos de la expresión anterior. Aśı,

dx

dt
≤ rx.

Integrando obtenemos la siguiente desigualdad:

ln
∣∣∣∣ xx0

∣∣∣∣ ≤ rt,
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la cual es equivalente a
x(t) ≤ x0e

rt.

Verificando la condición del ĺımite del teorema 2.3:

ĺım
t→δ−

x(t) ≤ ĺım
t→δ−

x0e
rt = x0e

rδ < +∞. (4.6)

Se puede verificar que mientras δ este acotado, el ĺımite anterior siempre será finito.

De manera similar, de la ecuación 4.1 se tiene que:

dy

dt
= −βy + γx2

t

a2 + x2
t

yte
−yt
N .

como antes, gracias a la proposición 4.2, es posible generar una cota dy

dt
eliminando los ele-

mentos negativos de la ecuación anterior y acotando e
−yt
N por 1, se obtiene que:

dy

dt
≤ γx2

t yt

a2 + x2
t

.

Esta expresión se puede acotar aún más en base a la cota definida para x y a la saturación
de la función de respuesta funcional, quedando la siguiente expresión:

dy

dt
≤ γy(t− τ)

Integrando y utilizando el método de los pasos, se obtiene la siguiente desigualdad:

y(t) ≤ γ||ψ||(t− τ)n

n! , t ∈ [nτ, (n+ 1)τ ].

Verificando la condición del ĺımite del teorema 2.3:

ĺım
t→δ−

y(t) ≤ ĺım
t→δ−

||ψ||(t− τ)n

n! < +∞, (4.7)

Por lo tanto, mientras δ este acotado, los ĺımites en 4.6 y 4.7 siempre serán finitos.

Al verificar que ni para x(t) ni y(t) se cumple la proposición del teorema 2.3, caemos en
una contradicción, en consecuencia δ = +∞.

4.1.4. Equilibrios del modelo

Para determinar los puntos de equilibrio del sistema 4.2 igualaremos a cero las ecuaciones
diferenciales que lo conforman, asumiendo que en el equilibrio los valores de la población con
y sin retardos son idénticos, por lo que x = xt e y = yt. Obteniendo aśı el siguiente sistema
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de ecuaciones:

0 = r

(
K − x

K

)
x− γx2

a2 + x2 y

0 = −βy + γx2

a2 + x2 ye
−y
N

(4.8)

Se resolvió el sistema (4.8) mediante métodos tradicionales y apoyándose en la libreŕıa sympyf
de Python, la cual entregó los siguiente valores de equilibrio para x e y:

(x, y) ∈ {(0, 0), (K, 0), (x∗, y∗)},

donde (x∗, y∗) corresponden a:

x∗ =
aβ

(
a

√
−β4e

4γ
N + 3β3γe

3γ
N − 3β2γ2e

2γ
N + βγ3e

γ
N − β2Ke

2γ
N + 2βγKe

γ
N − γ2K

)
e

γ
N(

βe
γ
N − γ

)(
aβ2e

2γ
N − aβγe

γ
N +K

√
−β4e

4γ
N + 3β3γe

3γ
N − 3β2γ2e

2γ
N + βγ3e

γ
N

)
(4.9)

y

y∗ =
ar

(
aβ2e

2γ
N − aβγe

γ
N +K

√
−β4e

4γ
N + 3β3γe

3γ
N − 3β2γ2e

2γ
N + βγ3e

γ
N

)
e− γ

N

βK
(
βe

γ
N − γ

)2 .

Se pudo determinar un cuarto punto de equilibrio estacionario el cual tiene signos opuestos
al anteriormente definido:

x∗ = −
aβ

(
a

√
−β4e

4γ
N + 3β3γe

3γ
N − 3β2γ2e

2γ
N + βγ3e

γ
N − β2Ke

2γ
N + 2βγKe

γ
N − γ2K

)
e

γ
N(

βe
γ
N − γ

)(
aβ2e

2γ
N − aβγe

γ
N +K

√
−β4e

4γ
N + 3β3γe

3γ
N − 3β2γ2e

2γ
N + βγ3e

γ
N

)
(4.10)

y

y∗ = −
ar

(
aβ2e

2γ
N − aβγe

γ
N +K

√
−β4e

4γ
N + 3β3γe

3γ
N − 3β2γ2e

2γ
N + βγ3e

γ
N

)
e− γ

N

βK
(
βe

γ
N − γ

)2 .

La solución 4.10 es negativa por lo que carece de sentido biológico. Dentro de las ráıces de la
expresiones x∗ e y∗ se tiene un polinomio que se denota por:

P (β, γ) = −β4e
4γ
N + 3β3γe

3γ
N − 3β2γ2e

2γ
N + βγ3e

γ
N .

Para asegurar que esta solución sea real se debe cumplir que P (β, γ) ≥ 0.
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4.1.5. Análisis de estabilidad de los equilibrios

Para analizar la estabilidad de las soluciones estacionarias se determinó la ecuación carac-
teŕıstica del sistema. Definimos las funciones fi : R2 → R, con i = 1, 2 por:

f1(x, y) = r

(
K − x

K

)
x− γx2

a2 + x2 y

y

f2(x, y) = −βy + γx2
t

a2 + x2
t

yte
−yt
N

Luego definimos las matrices A y B como:

A =
(

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)
; B =

(
∂f1
∂xt

∂f1
∂yt

∂f2
∂xt

∂f2
∂yt

)
.

En equilibrio estacionario x = xt mientras que y = yt, estas matrices corresponden respecti-
vamente a:

A =


r

K
(K − 2x) − 2γxya2

(a2 + x2)2
γx2

a2 + x2

0 −β


y

B =


0 0

2γxya2

(a2 + x2)2
γx2e

−y
N

a2 + x2

(
1 − y

N

)
 .

Se define la ecuación caracteŕıstica como:

det(λI −A− e−λτB)
∣∣∣∣∣
(x,y)=(x∗,y∗)

= 0.

a) Análisis para el equilibrio (0, 0)

Para este punto la ecuación caracteŕıstica queda definida como:

det
(
λ− r 0

0 λ+ β

)
= 0,
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lo cual es equivalente a la expresión:

(λ− r)(λ+ β) = 0

Por lo tanto, tenemos que los valores de λ corresponden a λ1 = r y λ2 = −β. Como β y r
son positivos, entonces uno de los valores de λ, es positivo. Aśı, el punto (x, y) = (0, 0) es
inestable. Esto significa que las soluciones del sistema que partan cerca de este punto tenderán
a alejarse de él con el tiempo. Este es un resultado plausible y se ha encontrado en estudios
como los de Kar (2005), Liu (2010) o Sun and Mai (2018).

b) Análisis para el equilibrio (K, 0)

En este punto la ecuación caracteŕıstica está determinada por:

det
(
λ+ r − γK2

a2+K2

0 λ+ β − γe−λτ K2

a2+K2

)
= 0

o equivalentemente

λ2 + (r + β)λ+ rβ − e−λτ (λ+ r)
(

γK2

a2 +K2

)
= 0.

Para estudiar condiciones de estabilidad absoluta se denota λ = z y se aplican los siguientes
cambios de variables:

u = β + r ; v = rβ y c = − γK2

a2 +K2 . (4.11)

Aśı, la ecuación caracteŕıstica toma la siguiente forma:

(z2 + uz + v) + e−zτ c(z + r) = 0.

Lo cual corresponde a una estructura:

p(z) + e−zτq(z) = 0, (4.12)

con p(z) = z2 + uz + v y q(z) = c(z + r).

Se analizó la estabilidad absoluta de (4.12) utilizando las condiciones establecidas que se
listan en la Proposición 2.4. Note que 4.11 implica que u > 0 y v > 0. Además, el grado de
P (z) es mayor que el grado de q(z), de donde inferimos que se cumple con la cuarta condición
del la Proposición . Recordemos que la norma de z = a+bi se define por |z| =

√
a2 + b2, luego

p(yi) = −y2 + uyi+ v, p(−yi) = −y2 − uyi+ v, |p(yi)|2 = (y2 + v)2 + (u2y2),

q(yi) = c(yi+ r), q(−yi) = c(−yi+ r), |q(iy)|2 = c2y2 + c2r2.
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Por lo tanto, se cumple la segunda condición de la Proposición para asegurar estabilidad ab-
soluta de este equilibrio estacionario (K, 0). Finalmente, bastaŕıa verificar la tercera condición
de la Proposición . Para esto planteamos la siguiente desigualdad equivalente:

|q(iy)|2 < |p(iy)|2
0 < |p(iy)|2 − |q(iy)|2
0 < ((y2 + v)2 + (u2y2)) − (c2y2 + c2r2)
0 < y4 + y2(2v + u2 − c2) + v2 + c2r2.

A continuación se introduce un Lema que será útil para determinar la tercera condición de la
Proposición 2.4.

Lema 4.1. [Brauer (1987)] La función g : R → R definida por

g(y) = y4 +By2 + C,

toma valores positivos para 0 ≤ y < ∞ si y sólo si:

C > 0 y B2 − 4C < 0

ó

C > 0 , B > 0 y B2 − 4C ≥ 0.

Ahora para asegurar la estabilidad absoluta de (4.12), aplicaremos el Lema 4.1 considerando
B = 2v + u2 − c2 y C = v2 + c2r2 > 0, por lo que es suficiente que se cumpla :

(2v + u2 − c2)2 − 4(v2 + c2r2) < 0, (4.13)

ó

2v + u2 − c2 > 0 y (2v + u2 − c2)2 − 4(v2 + c2r2)) ≥ 0. (4.14)

Notemos que v2(1 + c2) > 0 implica que podemos definir Γ =
√
v2 + c2r2, las condiciones

anteriores pueden ser reescritas como:

(2v + u2 − c2 + 2Γ)(2v + u2 − c2 − 2Γ) < 0 (4.15)

2v + u2 − c2 > 0 y (2v + u2 − c2 + 2Γ)(2v + u2 − c2 − 2Γ) ≥ 0 (4.16)

Puesto que Γ > 0 entonces (2v + u2 − c2 − 2Γ) < (2v + u2 − c2 + 2Γ), y (4.15) se satisface si
y sólo si 2v + u2 − c2 + 2Γ > 0 y 2v + u2 − c2 − 2Γ < 0, o bien

−2Γ < 2v + u2 − c2 < 2Γ.
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Por otro lado 4.16, se satisface si y sólo si (2v+ u2 − c2 − 2Γ) ≥ 0, puesto que se verifican las
siguientes desigualdades:

(2v + u2 − c2 − 2Γ) < 2v + u2 − c2 < (2v + u2 − c2 + 2Γ)

Resumiendo, la ecuación (4.12) es absolutamente estable si se verifican las siguientes desigual-
dades u > 0, v > 0 y también −2Γ < 2v + u2 − c2 < 2Γ ó 2v + u2 − c2 ≥ 2Γ. Aplicando el
cambio de variables 4.11 estas condiciones se redefinen como:

β + r > 0 (4.17)

rβ > 0 (4.18)

2rβ + (β + r)2 −
(

γK2

a2 +K2

)2

≥ −2r

√
β2 +

(
γK2

a2 +K2

)2
(4.19)

Las condiciones 4.17 y 4.18 se cumplen siempre, ya que los parámetros del modelo son siempre
positivos. En consecuencia, podemos afirmar que (K, 0) es absolutamente estable si se cumple
la condición 4.19. Esto implica que las soluciones del modelo que partan cerca de (K, 0) se
acercarán a este punto con el tiempo, es decir que dadas ciertas condiciones es posible que
se extingan los predadores. Como esto corresponde a una estabilidad absoluta, esta condición
no depende del retardo τ del modelo. En otros modelos de predador-presa con retardo ha
sido posible plantear condiciones para la estabilidad de soluciones donde hay extinción de los
predadores y persistencia de las presas (Sun and Mai, 2018).

c) Análisis para el equilibrio (x∗, y∗)

Para este punto de equilibrio la ecuación caracteŕıstica queda definida como:

det
(
λ− a∗

11 −a∗
12

−e−λτ b∗
21 λ− a∗

22 − e−λτ b∗
22

)
= 0

(λ− a∗
11)
(
λ− a∗

22 − e−λτ b∗
22

)
− e−λτa∗

12b
∗
21 = 0

o bien

(λ− a∗
11) (λ− a∗

22) − e−λτ b∗
22 (λ− a∗

11) − e−λτa∗
12b

∗
21 = 0

λ2 − (a∗
11 + a∗

22)λ+ a∗
11a

∗
22 − e−λτ (b∗

22(λ− a∗
11) + a∗

12b
∗
21) = 0,

donde
a∗

11 = r

K
(K − 2x∗) − 2γx∗y∗a2

(a2 + (x∗)2)2 , a∗
12 = γ(x∗)2

a2 + (x∗)2 , a∗
22 = −β,
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y

b∗
21 = 2γx∗y∗a2

(a2 + (x∗)2)2 , b∗
22 = γ(x∗)2e

−y∗
N

a2 + (x∗)2

(
1 − y∗

N

)
.

Es posible aplicar el análisis de estabilidad absoluta para el punto de equilibrio (x∗, y∗), pero
esto implicaŕıa un gran desarrollo algebraico que superaŕıa los tiempos definidos para esta
investigación.

4.1.6. Simulaciones numéricas

Para la simulación numérica del modelo (4.2) se consideraron los valores para los parámetros
que se presentan en el Cuadro 4.1. Con estas combinaciones de parámetros se realizaron un
total de 216 simulaciones para el modelo (4.2), estos resultados fueron agrupados según el
comportamiento que presentaron las poblaciones del predador y las presas. La categoŕıas en
las que clasificaron los resultados fueron: Poblaciones en equilibrio positivo (72.2 %), extinción
de predadores (26.6 %) y poblaciones oscilantes (1,4 %). Como se explicó en la metodoloǵıa,
las gráficas de las densidades de presas se realizaron en escala logaŕıtmica, dado que su valores
presentan varios ordenes de diferencia con la de los predadores, lo que imped́ıa su correcta
visualización.

Cuadro 4.2: Parámetros simulación modelo

Parámetros Descripción Valores simulados
r Tasa de reproducción de las presas 0.05, 0.1, 0.2
K Capacidad de carga 200, 500
a Tasa de saturación media predador 0.1, 0.5, 0.8
γ Tasa máxima de consumo per cápita predador 0.1, 0.5, 0.8
β Tasa de mortalidad predador 0.05, 0.1
N Tamaño óptimo de reproducción para la población predador 1, 2

Extinción de los predadores

Esta situación se produce cuando los predadores tienen una alta tasa de mortalidad (β) y
una alta tasa media de saturación (a) (Figura 4.1). En este caso el predador no tiene un gran
impacto en las presas, ya que su parámetro γ de consumo per cápita es bajo. Lo anterior
conlleva a que las presas sigan creciendo exponencialmente a su tasa de reproducción (r)
hasta alcanzar la capacidad de carga (K), mientras que la densidad de los predadores se va
acercando a cero. Variar el parámetro del tamaño óptimo para la reproducción del predador
(N) no cambiaŕıa la tendencia registrada. Es importante destacar que, como señala Rumiz
(2010), el rol de carńıvoro es poder controlar a las poblaciones de ciertas especies, y como
muestra la simulación, el aumento de la mortalidad del Puma implica un rápido crecimiento
de las presas. En la literatura se menciona que la perdida de este control biológico puede
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implicar ciclos de plagas que podŕıan provocar extinciones locales de distintas especies de
plantas y animales (Ŕıos, 2009).
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Figura 4.1: Simulación de extinción de predadores

Las poblaciones tienden al equilibrio positivo

Para este caso el valor de la tasa de saturación (a) supera a la tasa máxima de consumo
per cápita predador (γ), por lo que la población del predador se va regulando a medida que
consume a las presas, convergiendo hacia un valor fijo, mientras que si bien las presas presen-
tan oscilaciones en su densidad, su alta tasa de reproducción (r) permite que se mantengan
cercanas a la capacidad de carga (K) (Figura 4.2). Por otro lado, la baja tasa de mortalidad
de los predadores (β) les permite poder mantener una densidad superior a la definida por el
parámetro (N).

Población oscilante

Para este caso, cada curva presenta unos máximos periódicos desplazados temporalmente
para el predador y la presa (Retroalimentación) (Figura 4.3). Una vez que el puma alcanza
su densidad máxima, la población de presas desciende a tal punto que el alimento empieza
a escasear, lo que en consecuencia produce una disminución de la población de la especie
predadora, casi hasta el punto de extinción. Luego de esto el número de presas se regula y
comienza a elevarse, iniciando un nuevo ciclo. En todas las simulaciones que dieron este tipo
de resultado la tasa de reproducción de presas (r) es baja y la capacidad de carga fue de 200
presas por cada 100 km2, mientras que la tasa de mortalidad de los predadores (β), la tasa
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Figura 4.2: Simulación de poblaciones en equilibrio positivo

máxima de consumo per cápita predador (γ) y el tamaño óptimo para la reproducción (N),
tuvieron los valores máximos evaluados. La tasa de saturación media de los predadores fue
diferente en todos los casos, por lo que no seŕıa influyente en este tipo de resultado. Como
hay una alta mortalidad de predadores y una baja natalidad y capacidad de carga de presas,
ninguno de los dos alcanza a estabilizarse en el tiempo, lo cual sumado a la alta eficiencia en la
caza por parte de los predadores, genera este comportamiento oscilatorio entre las densidades
de predador y presas. Cabe destacar que la densidad de los predadores se comporta con el
patrón t́ıpico asociado a un modelo tipo Nicholson (Gurney et al., 1980).
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Figura 4.3: Simulación de densidades oscilatorias

4.2. Estudio del modelo con dos parches

Al extender el modelo a dos parches se estableció que existe un movimiento de los predadores
desde un parche hacia el otro. Podemos aplicar este tipo de modelo para el Puma ya que existe
evidencia que indica que estos se desplazaŕıan a otros territorios en respuesta a la falta de las
presas disponibles (Rumiz, 2010). Aśı mismo, el registro llevado a cabo por el Proyecto-GEF
(2021), es una clara evidencia de que esta especie puede desplazarse entre distintos parches en
busca de su alimento. En el siguiente esquema (Figura 4.4) se diagrama el proceso migratorio
del puma entre dos parches:

Parche 1 Parche 2

Figura 4.4: Esquema de migración de predadores
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Donde m1 es la tasa de migración de predadores desde el parche 1 hasta el parche 2, m2 es
la tasa de migración de predadores desde el parche 2 hasta el parche 1, x1 es la densidad de
presas del parche 1, x2 es la densidad de presas del parche 2, y1 es la densidad de predadores
del parche 1, y2 es la densidad de predadores del parche 2, N1 es el tamaño óptimo para la
reproducción de los predadores del parche 1 y N2 es el tamaño óptimo de reproducción de
los predadores del parche 2. El resto de los parámetros son los mismos que se utilizaron en
el modelo para un parche, salvo que se incluye la capacidad de carga de las presas de cada
parche: parámetros K1 y K2.

4.2.1. Modelo con migración constante

El modelo con migración constante considera que una porción constante de los predadores del
parche 1 se mueven al parche 2 (Sistema 4.20).



dx1
dt

= r

(
K1 − x1
K1

)
x1 − γx2

1
a2 + x2

1
y1

dy1
dt

= −βy1 +
γx2

1t

a2 + x2
1t

y1te
−y1t

N1 +m2y2 −m1y1

dx2
dt

= r

(
K2 − x2
K2

)
x2 − γx2

2
a2 + x2

2
y2

dy2
dt

= −βy2 +
γx2

2t

a2 + x2
2t

y2te
−y2t

N2 +m1y1 −m2y2

(4.20)

4.2.2. Modelo con migración denso dependiente

En este modelo la migración se establece como un flujo denso dependiente de la cantidad de
presas que existe en un parche i, con i = 1, 2, en el instante t. Si la población en un parche
disminuye los predadores procederán a trasladarse hacia un parche j. El modelo general se
representa en el Sistema 4.21.



dx1
dt

= r

(
K1 − x1
K1

)
x1 − γx2

1
a2 + x2

1
y1

dy1
dt

= −βy1 +
γx2

1t

a2 + x2
1t

y1te
−y1t

N1 + 1
1 + x2

y2 − 1
1 + x1

y1

dx2
dt

= r

(
K2 − x2
K2

)
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4.2.3. Modelo con migración radio dependiente

Para este modelo se establece una migración de los predadores que depende de las densidades
de las presas en los parches de entrada y de salida. En este caso el predador irá del parche
i que tiene un menor número de presas, hacia el parche j que tiene un mayor número de
estas. Para poder aplicar este mecanismo se incluyeron las siguientes funciones de migración
al modelo:

m1 = x2
100x1 + x2

m2 = x1
100x2 + x1

(4.22)

Estas funciones no se indeterminan si es que la población de alguno de los parches tiende
a cero ni tampoco permiten la migración con tasas superiores a uno, ya que esto implicaŕıa
movimientos de un tamaño de predadores mayores a la densidad del instante t. Integrando
las funciones de 4.22 al modelo 4.20 proponemos el siguiente modelo:

dx1
dt
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(
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)
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(4.23)

Se realizó una simulación de los valores de migración de predadores entre dos parches, variando
en el tiempo su densidad de presas tal como se presenta en el cuadro 4.3. De estos resultados
se infiere que las funciones planteadas en 4.22 asignan una migración del 100 % cuando en un
parche no hay presas. Aśı mismo, el movimiento de predadores se mantiene en niveles cercanos
a cero cuando las poblaciones de presas de ambos parches son similares, comportamiento que
se puede apreciar en la figura 4.5 .
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Figura 4.5: Simulación de migración de predadores

Cuadro 4.3: Simulación de migración

Tiempo
(meses)

Densidad presas
parche i

Densidad presas
parche j

Migración predadores
de i a j

Migración predadores
de j a i

1 300 0 0,00 % 100,00 %
2 285 15 0,05 % 15,97 %
3 270 30 0,11 % 8,26 %
4 255 45 0,18 % 5,36 %
5 240 60 0,25 % 3,85 %
6 225 75 0,33 % 2,91 %
7 210 90 0,43 % 2,28 %
8 195 105 0,54 % 1,82 %
9 180 120 0,66 % 1,48 %
10 165 135 0,81 % 1,21 %
11 150 150 0,99 % 0,99 %
12 135 165 1,21 % 0,81 %
13 120 180 1,48 % 0,66 %
14 105 195 1,82 % 0,54 %
15 90 210 2,28 % 0,43 %
16 75 225 2,91 % 0,33 %
17 60 240 3,85 % 0,25 %
18 45 255 5,36 % 0,18 %
19 30 270 8,26 % 0,11 %
20 15 285 15,97 % 0,05 %
21 0 300 100,00 % 0,00 %
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4.2.4. Simulaciones numéricas con dos parches

Para realizar las simulaciones numéricas con los dos parches, se utilizaron los mismos valores
de los parámetros descritos en la tabla 4.1. Los resultados se agruparon según similitud y se
compararon las simulaciones entregadas por los tres tipos de modelos de dos parches definidos
en este estudio (Ecuaciones (4.20), (4.21) y (4.23)). Al segundo parche incluido en las simu-
laciones se le asignó una mayor capacidad de carga de presas, realizando simulaciones con
valores de K2 igual a 300 y 600 presas por 100 km2. Aśı mismo, los valores iniciales asociados
a este parche fueron de 200 presas en 100 km2 y dos predadores en 100 km2. Para el modelo
con migración constante se definió una tasa de migración desde el parche 2 al parche 1 de
20 % (m1) y una tasa de migración desde el parche 1 al parche 2 de 10 % (m2).

a) Caso extinción de predadores

En estos casos se observa que la densidad de las presas de ambos parches se encuentra cercana
a las capacidades de carga (K1 y K2), mientras que la de los predadores paulatinamente
disminuye y tiende a cero. En la Figura 4.6 se aprecia que este comportamiento es generalizado
para los tres tipos de migración utilizados. En cuanto a los parámetros de la simulación, la
tasa de mortalidad de los predadores β es alta, la tasa máxima de consumo per cápita de los
predadores (γ) es baja y los tamaños óptimos para la reproducción de predadores (N1 y N2)
también son bajos, lo que explicaŕıa la extinción de los pumas y que las presas se mantengan
en capacidad de carga a pesar de tener una baja tasa de reproducción (r).
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r = 0.05 K1 = 200 K2 = 300 a = 0.1 ß = 0.1 γ = 0.1 N1 = 1 N2 = 1

0.0

2.5

5.0

7.5

0 250 500 750 1000 1250
Tiempo (Meses)

D
en

si
da

d 
N

°in
d/

10
0k

m
2

Especies
Log(Presa parche 1)

Log(Presa parche 2)

Predador parche 1 (Puma)

Predador parche 2 (Puma)

Aproximación numérica

(c) Migración radio dependiente

r = 0.05 K1 = 200 K2 = 300 a = 0.1 ß = 0.1 γ = 0.1 N1 = 1 N2 = 1

0.0

2.5

5.0

7.5

0 250 500 750 1000 1250
Tiempo (Meses)

D
en

si
da

d 
N

°in
d/

10
0k

m
2

Especies
Log(Presa parche 1)

Log(Presa parche 2)

Predador parche 1 (Puma)

Predador parche 2 (Puma)

Aproximación numérica

Figura 4.6: Simulación de modelos de dos parches, caso extinción de los predadores
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b) Caso equilibrio positivo

Este grupo se caracterizó por tener densidades de presa que tienden a la capacidad de carga,
mientras la densidad de los predadores va oscilando hasta alcanzar valores constantes que
dependen de los valores del resto de los parámetros (Ver Figura 4.7). El comportamiento
fue similar entre los tres tipos de migración, pero las oscilaciones presentes en la simulación
con migración constante fueron mucho más reducidas que en el resto de las simulaciones.
Aśı mismo, en todas las simulaciones se aprecian retroalimentaciones entre las poblaciones de
predadores y presas de los distintos parches, pero en los casos de la migración denso y radio
dependiente la población de predadores del parche 2 tiende a cero, siendo superada por la
densidad de presas del parche 1. En cuanto a los parámetros, la mayor densidad de presas en
el parche 1 se debe a su mayor capacidad de carga (K1), lo que favorece el desplazamiento
de los predadores hacia ésta área. Por otro lado, a pesar de tener un alto valor para la tasa
consumo per cápita de los predadores (γ) y una baja tasa de reproducción de presas (r), estas
últimas no disminuyen su densidad debido a que la tasa de saturación media de los predadores
(a) también es alta y sus tamaños óptimos (N1 y N2) son bajos, limitando el consumo de los
pumas.
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(a) Migración constante

r= 0.2 K1= 500 K2= 600 a= 0.8 ß= 0.05 γ= 0.8 N1= 1 N2= 1

0.0

2.5

5.0

7.5

0 250 500 750 1000 1250
Tiempo (Meses)

D
en

si
da

d 
N

°in
d/

10
0k

m
2

Especies
Log(Presa parche 1)

Log(Presa parche 2)

Predador parche 1 (Puma)

Predador parche 2 (Puma)

Aproximación numérica

(b) Migración denso dependiente
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(c) Migración radio dependiente
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Figura 4.7: Simulación de modelos de dos parches, caso equilibrios positivos
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c) Caso población oscilante

Esta clase de simulación se caracterizó por presentar oscilaciones de las densidades de pre-
dadores y presas. Los valores de la densidad de presas se mueven entre las capacidades de
carga (K1 y K2) y cero (Ver Figura 4.8). La densidad de presas del parche 2 presenta mayores
fluctuaciones en comparación con las presas del parche 1, mientras que la densidad de los
predadores de ambos parches oscilan entre cero y su valor máximo. Al comparar los distintos
tipos de migración, es posible apreciar diferencias sustanciales entre estos, ya que la simu-
lación con migración constante presenta mayores cambios en el tiempo que el resto. En las
sub figuras 4.8-b y 4.8-c, se observa que las densidades de los predadores se comportan con el
patrón t́ıpico asociado a un modelo tipo Nicholson, caracterizado por una doble cresta (Gur-
ney et al., 1980). Entre el modelo con migración denso dependiente y radio dependiente, se
observa que este último tiene más oscilaciones en las densidades de predadores y presas, pero
en ambos casos la densidad de predadores alcanza valores mayores que en el caso de migración
constante. Este tipo de soluciones se caracterizan por una baja tasa de reproducción de las
presas (r), una baja mortalidad de los predadores (β) y una alta tasa de máxima de consumo
per cápita de los predadores (γ). Todo esto influye disminuyendo la densidad de las presas,
en especial del parche 1, donde el tamaño óptimo para la reproducción (N1) es mayor.
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(a) Migración constante
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(b) Migración denso dependiente
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(c) Migración radio dependiente
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Figura 4.8: Simulación de modelos de dos parches, caso población oscilante
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4.3. Simulación de escenarios

Se plantearon tres escenarios hipotéticos que intentan ilustrar distintas perturbaciones que
puede sufrir el sistema predador-presa considerado en este estudio. El primer escenario corres-
ponde a la remoción sistemática del 50 % de las presas cuando estas alcanzan una densidad
cercana a la capacidad de carga del ecosistema. En el segundo escenario se realiza una re-
moción del 50 % de los predadores cuando estos alcanzan los cuatro individuos por cada 100
Km2. Estos dos escenarios se plantearon sobre la base del caso de poblaciones oscilantes si-
muladas para el modelo con un parche. El tercer escenario se plantea para el sistema con dos
parches, en donde se limita el movimiento de predadores a un 30 % y se simuló bajo la base
del modelo con migración radio dependiente con población oscilante. Para estas simulaciones
se utilizaron los parámetros del caso presentado en la Figura 4.8, ya que es el que presenta un
equilibrio más delicado y es posible apreciar de mejor manera el efecto de las perturbaciones
en el sistema.

4.3.1. Reducción de las presas

La remoción de presas que se aprecia en la figura 4.9, cambia la dinámica de los predadores, ya
que se presenta la perdida del comportamiento caracteŕıstico de una población representada
con un modelo tipo Nicholson. Aún aśı, la tendencia general de las densidades de predadores
y presas sigue el mismo patrón del sistema que no ha sufrido la alteración, donde la población
de pumas alcanza el mismo valor máximo pero luego tienen un rápido descenso. Es posible
identificar que se mantienen las retroalimentaciones entre las densidades de predador y presas,
pero la remoción sistemática de una fracción de las presas disminuye la duración de los periodos
de mayor abundancia del puma.

4.3.2. Reducción de los predadores

La disminución de la densidad de pumas genera una alteración en el comportamiento del
sistema (Ver Figura 4.9-c). Se pierden totalmente las retroalimentaciones entre predador y
presas. Estas últimas disminuyen su población hasta alcanzar un número constante en el
tiempo, mientras que para el Puma se tiene una oscilación constante entre el número máximo
determinado para la densidad (cuatro individuos por 100 Km2) y el 50 % de este valor (dos
individuos por 100 Km2). Si se compara con la alteración de la reducción del número de
presas, la disminución del predador puede generar un efecto notoriamente más significativo
en las tendencias del sistema. Este cambio del comportamiento es comparable al resultado
obtenido por el estudio de Barman and Ghosh (2022) donde se definió que al implementar la
cosecha de la presa y el predador por separado, se puede generar un cambio de estabilidad
del sistema.
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(c) Escenario con remoción de predador
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Figura 4.9: Efecto de la remoción de presas y predadores
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(a) Escenario sin limitación de la migración
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(b) Escenario con limitación de la migración
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Figura 4.10: Efecto de la limitación en la migración

4.3.3. Limitación de la migración

La limitación de la movilidad del Puma (Ver Figura 4.10), disminuye notoriamente los máxi-
mos poblacionales de la densidad del predador que se producen en la simulación sin esta
alteración. Este cambio se ve acentuado en la población del parche 2, la cual pasa a ser in-
ferior a la del parche 1. Esto dado que, el parámetro N1 del primer parche es mayor al N2,
por lo que este último tiene una menor capacidad de recambio de individuos adultos. En el
sistema sin alteración, el parche 1 tiene un mayor tamaño óptimo para la reproducción de
predadores, pero el parche 2 posee una mayor capacidad de carga de presas (K2), por lo que
la migración favorece positivamente al desarrollo general de la población de pumas. Con este
resultado se refuerza la necesidad de mantener o bien aumentar la infraestructura ecológica
necesaria que le permita a los pumas poder desplazarse libremente entre diferentes sectores,
de manera de mejorar su estado de conservación.
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Caṕıtulo 5

Conclusiones

El presente trabajo exploró diversas potencialidades de un modelo que describe el compor-
tamiento de un sistema biológico, siendo un aporte al conocimiento del área de las bioma-
temáticas o más espećıficamente en la ecoloǵıa matemática.

Fue posible integrar un modelo predador-presa de ecuaciones diferenciales con retardo, una
respuesta funcional tipo III, crecimiento loǵıstico para las presas y una ecuación tipo Nichol-
son para el Puma. Como se ha mencionado con anterioridad, no existen estudios previos que
integren este tipo de modelos matemáticos y que los apliquen a la especie de interés de esta
investigación. En este modelo se aseguró que un aumento de la densidad del predador dismi-
nuye la tasa de incremento per cápita de las presas, que hay un efecto positivo de la densidad
de las presas sobre la tasa de incremento per cápita del predador. Además, que la tasa de
reproducción del Puma tiene un máximo que va decreciendo a medida que la población se
densifica y también ante la falta de presas. Lo anterior se verificó ya que son atributos que
establecieron Berryman et al. (1995) para la credibilidad de este tipo de modelos. Fue posible
demostrar que para el modelo planteado existe una única solución máximal para cada con-
dición inicial, la cual es no negativa para condiciones iniciales no negativas y que está bien
definida para todo t mayor que cero.

Se determinaron los equilibrios del sistema 4.1 y fue posible estudiar parcialmente su es-
tabilidad, ya que la dificultad algebraica de estos resultados impidieron poder aplicar la teoŕıa
matemática desarrollada para este tipo de sistemas. Se pudo definir que el escenario de ex-
tinción de predador y presas es un punto de equilibrio inestable, mientras que para el punto
en donde los presas alcanzan su capacidad de carga y el Puma se extingue, se plantearon
condiciones que aseguran su estabilidad absoluta. Para el tercer punto de equilibrio, no se
pudo realizar el análisis de estabilidad, pero se planteó un desarrollo general de su ecuación
caracteŕıstica. Los resultados obtenidos para los equilibrios analizados, son congruentes con
otros estudio similares (Kar, 2005; Liu, 2010; Sun and Mai, 2018). Estos análisis pueden ser
completados a futuro realizando un estudio de las bifurcaciones de Hopf, que es la metodo-
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loǵıa adecuada para examinar el comportamiento de las soluciones periódicas que tienen los
sistemas dinámicos (Smith, 2011).

Las simulaciones realizadas con distintos valores para los parámetros del modelo, indicaron
que existen tres posibles escenarios para las soluciones del modelo. En el primero de estos se
produce la extinción del predador, en el segundo las poblaciones de predador y presa se vuel-
ven constantes y en el último se produce una dinámica de retroalimentaciones constantes entre
las densidades del predador y la presa. Uno de los resultados destacables es que el aumento
de la tasa de mortalidad de los pumas genera un rápido crecimiento de las presas, lo que se
podŕıa asociar al desencadenamiento de plagas que tienen un alto riesgo en la biodiversidad
de los ecosistemas.

Al extender el modelo inicial a dos parches, se agregaron tres modulaciones para la migra-
ción del Puma entre los parches: constante, denso dependiente y radio dependiente. Las dos
últimas fueron las que entregaron más complejidad a las soluciones simuladas, visualizándose
patrones de migración entre los parches como respuesta a los cambios en las densidades de las
poblaciones de presas. El modelo de migración radio dependiente es una contribución parti-
cular de este trabajo y a futuro se podŕıa estudiar su comportamiento al integrarse con otro
tipo de modelos.

Al modificar la densidad de la población de presas y de los predadores, se pudieron apreciar
modificaciones en el comportamiento del sistema. La remoción sistemática de una fracción
de las presas, disminuye la duración de los periodos donde la densidad del Puma es máxima.
Aśı mismo, al quitar una fracción importante de la población de pumas, la población de pre-
sas crece a tasa exponencial alcanzando la capacidad de carga del ecosistema. Lo anterior es
evidencia de que modificar las densidades de estos predadores incrementa la probabilidad de
tener plagas de algunas especies que este controla naturalmente. Estos resultado son similares
a los obtenidos por el estudio de Laguna et al. (2015), donde se plantea un modelo matemático
que, mediante la dinámica de parches, describe la relación entre el puma y dos presas. En esta
investigación, la extinción del puma genera un aumento de la tasa de ocupación de parches
de las presas (guanacos y ovejas).

La limitación de la migración entre los parches generó un efecto negativo en los máximos
alcanzados por las poblaciones de predadores presentes en ambos parches, esta es una evi-
dencia más que enfatiza la importancia de mantener los corredores biológicos que conectan
los diferentes ecosistemas donde habita el Puma. Este resultado ya tiene precedentes en la
literatura, como el estudio de Liu (2010) donde se determinó que la tasa de migración tiene
un gran efecto en el comportamiento dinámico de un modelo predador-presa sin retardo.

En un futuro estudio seŕıa interesante determinar condiciones para la existencia de un equi-
librio positivo y para la estabilidad absoluta de este mismo, que fue uno de los temas en
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que no se pudo profundizar en esta investigación, aśı como también evaluar los cambios que
producen las perturbaciones evaluadas en el subcaṕıtulo 4.3, pero aplicadas a sistemas que
estén en equilibrio. Por último, dados los antecedentes sobre el tiempo de madurez sexual
diferenciada entre pumas machos y hembras (Toledo and Surot, 2003), seŕıa necesario evaluar
la posibilidad de plantear un modelo que integre esta condición.
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