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Resumen

La especie nativa Puma concolor (Puma) es el mayor predador de los ecosiste-
mas cordilleranos chilenos y actualmente satisface los criterios establecidos en la
normativa chilena para ser catalogada como amenazada (MMA| [2020)). La inves-
tigacion de Rumiz| (2010) indica que, al tratarse de un gran carnivoro, los pumas
cumplen un rol fundamental en los ecosistemas, ya que al controlar del ntimero de
herbivoros permiten la regeneracién de especies vegetales, es decir son reguladores
de otras poblaciones. Asi mismo, este autor ha concluido que estos carnivoros se
distribuyen en su habitat segtn la disponibilidad, abundancia y vulnerabilidad de
sus presas. Muchos modelos predador-presa ignoran el tiempo para la conversién
de la biomasa consumida en biomasa del predador, lo que puede ser subsanado
agregando al modelo un factor de retardo que incorpore informacién de la pobla-
ci6n hace 7 periodos de tiempo, transformando la ecuacién del predador en una
Ecuacién Diferencial con retardo. En el presente trabajo se definié un modelo ma-
tematico que, mediante el uso de ecuaciones diferenciales con retardo, describe la
dindmica predador-presa para la especie P. concolor. Se asocié al predador una res-
puesta funcional Holling del tipo IIT (Holling, [1965|) y un crecimiento determinado
por la ecuacién de Nicholson (Berezansky et al.|2010), mientras que las presas fue-
ron modeladas con crecimiento logistico. Se planted un sistema para una especie
de predador en un parche, demostrando la existencia y unicidad de soluciones no
negativas y acotadas para condiciones iniciales no negativas, ademas de determi-
nar los respectivos equilibrios estacionarios del sistema. El anélisis de estabilidad
de los equilibrios se vio limitado ante la dificultad de analizar las expresiones ob-
tenidas para las ecuaciones caracteristicas. Aun asi, se defini6 la inestabilidad de
la solucién trivial del sistema y bajo ciertas condiciones se mostré la estabilidad
absoluta de la solucién con extincién de los predadores. Luego el modelo planteado
fue extendido a dos parches acoplados, entre los que se desplazan los predadores,
generando tres sistemas diferentes que, dependiendo del mecanismo o supuesto
que genera la migracién, describen el movimiento de los pumas entre los parches.
El dltimo mecanismo propuesto, es una migracién que depende de la razén entre
las densidades de presas de ambos parches, la cual es una propuesta original de
este trabajo. Los sistemas se resolvieron mediante métodos numéricos, utilizan-
do los mismos valores iniciales pero con distintos valores para los parametros, de
manera de apreciar como estos afectan el comportamiento predador y presas. Se
diferenciaron tres tipos distintos de soluciones, los cuales se denominaron como:
extincién de los predadores, equilibrios positivos y soluciones oscilatorias. Por lti-
mo, se evalud el efecto de remocién sisteméatica de presas y predadores, ademas
de la limitacién de la migracién entre parches, donde se aprecié que estas modifi-
caciones inciden en la dindmica normal del sistema. Las propuestas y avances de
este trabajo pueden ser un insumo para el desarrollo de futuras investigaciones
relacionadas con el Puma o sistemas predador-presa en general.



Abstract

The native species Puma concolor (Puma) is the largest predator in Chilean An-
dean ecosystems and currently meets the criteria established in Chilean regulations
to be classified as threatened (MMA] 2020)). The investigation of Rumiz (2010)) in-
dicates that being a large carnivore, pumas play a fundamental role in ecosystems,
since by controlling the number of herbivores they allow the regeneration of plant
species, that is, they are regulators of other populations. Likewise, this author
has concluded that these carnivores are distributed in their habitat according to
the availability, abundance, and vulnerability of their prey. Many predator-prey
ignore the time for conversion of consumed biomass in predator models, which can
be remedied by adding to the model a delay factor that incorporates information
from the population 7 periods ago of time, transforming the predator’s equation
into a delayed Differential Equation. In the present work, a mathematical model
was defined that, through the use of delayed differential equations, describes the
predator-prey dynamics for the species P. concolor. The predator was associated
with a type III Holling functional response (Holling, 1965 and a growth deter-
mined by the Nicholson equation (Berezansky et al., 2010]), while the prey was
modeled with logistic growth. A system for a species of predator in a patch was
proposed, demonstrating the existence and uniqueness of non-negative and boun-
ded solutions for non-negative initial conditions, in addition to determining the
respective stationary equilibria of the system. The equilibrium stability analysis
was limited by the difficulty of analyzing the expressions obtained for the charac-
teristics. Still, the instability of the trivial solution of the system was defined and
under certain conditions, the absolute stability of the solution with the extinction
of predators was shown. Then the proposed model was extended to two coupled
patches, between which predators move, showing three different systems that, de-
pending on the mechanism or assumption that generates migration, describe the
movement of pumas between patches. The last proposed mechanism is a migration
that depends on the ratio between the prey densities of both patches, which is an
original proposal of this work. The systems were solved by means of numerical
methods, using the same initial values but with different values for the parame-
ters, in order to appreciate how these derive the predator and prey behavior. Three
different types of solutions were differentiated, which were named: extinction of
predators, positive equilibria, and oscillatory solutions. Finally, the effect of the
systematic elimination of prey and predators was evaluated, in addition to the
limitation of migration between patches, where it was observed that these modifi-
cations affect the normal dynamics of the system. The proposals and advances of
this work can be an input for the development of future research related to Puma
or predator-prey systems in general.



Capitulo 1

Introduccion

La dindmica de poblaciones es una especialidad cientifica que se ocupa del estudio de las pobla-
ciones modelando, mediante ecuaciones matematicas, el comportamiento de estas para poder
realizar predicciones de sus cambios, conductas y consecuencias biolégicas (EDAN| 2019)). Asi
mismo, la depredacién se define generalmente como el consumo de todo o parte de un orga-
nismo viviente por otro, fenémeno que se modela a través de los sistemas predador-presa, los
cuales representan esta interaccién que se da entre dos especies donde una (predador) se apro-
vecha de la otra (presa) (Smith and Smith, 2007). El método més basico para proyectar los
cambios en el tiempo de una poblacién son las ecuaciones diferenciales, donde la idea central
es que a partir de un valor inicial para la poblacién podemos usar un modelo para predecir
cuantos individuos habri en el futuro, siendo una de sus aplicaciones el modelamiento de
relaciones interespecificas (Kitzes| 2022).

En el presente capitulo se entregan algunos antecedentes acerca de la especie de interés en este
estudio. Ademas de un resumen de los principales fundamentos del modelamiento de sistemas
predador-presa.

1.1. Antecedentes

1.1.1. El Puma

La especie nativa Puma concolor (Puma) es el mayor predador de los ecosistemas cordillera-
nos chilenos (Toledo and Surot|, |2003). A nivel global esta especie se clasifica como “Cercana a
la Amenaza” y entre los factores que la amena en la actualidad destacan la caza, la expansion
inmobiliaria, el cambio de uso de suelo o el cambio climatico (Rios, 2009). Estudios previos
han estimado la densidad de pumas en distintas zonas del pais, estando estas en un rango
de entre 0,75 y 2,5 individuos por 100 km? (Guarda et al. 2017). Estos ntimeros muestran
el delicado estado de conservacién del puma en nuestro pais. De hecho la especie cumple los
criterios de la normativa chilena para ser catalogada como amenazada (MMA] [2020).
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Este carnivoro tiene dentro de sus presas mas comunes alces, ciervos, venados, castores, ardi-
llas, marmotas, lauchas, ratones, conejos, liebres y jabalies, pero en Chile depreda particular-
mente lagomorfos (Conejos) y camélidos (Vicunas y guanacos) (Toledo and Surot, [2003).

En cuanto a la ecologia de la especie y su comportamiento social, Rumiz| (2010) indica que,
al tratarse de un gran carnivoro, las poblaciones de pumas cumplen un rol clave en los eco-
sistemas, controlando el ntimero de herbivoros y de este modo permitiendo la regeneracion
de especies vegetales, es decir, son reguladores de otras poblaciones. Adicionalmente, es se ha
concluido que para los pumas importa mas la disponibilidad, abundancia y vulnerabilidad de
sus presas y no su comportamiento social para distribuirse en su hébitat (Rumizl, 2010). Este
mismo comportamiento también ha sido evidenciado en otros estudios e indica que los pumas
se desplazarian a otros territorios en respuesta a una baja de las presas disponibles (Rumiz,
2010).

En una investigacién reciente llevada a cabo en el marco del Proyecto GEF Montana (Proyecto-
GEF} [2021)), en la que se registrd la actividad de dos pumas por 13 meses, se pudo detectar el
movimiento de estos especimenes entre dos areas distintas o “parches” de la zona central de
Chile. Este desplazamiento se realiz6 a través de una red de corredores biologicos de montana
que conectan ecosistemas de la Regién Metropolitana y la Regién de Valparaiso (Ver Figura

L).

Puma 2
Total recorrido:

1.687

kilometros

Llay,Liay,

\Vina'del[Mar Limache

Valparaiso

Lo Barnechea

Santiago

Figura 1.1: Desplazamiento de pumas monitoreados
(Proyecto-GEF [2021))

La madurez sexual de las hembras se alcanza alrededor de los dos anos, mientras que en los
machos esta se da al final de los tres anos y el periodo de gestacion de las crias es de entre 90
y 95 dias, teniendo camadas de entre dos y tres individuos cada dos anos (Toledo and Surot,
2003).



1.1.2. Modelos matematicos
Fundamentos de los modelos predador-presa

Dentro de la literatura es posible encontrar distintos fundamentos para modelar la relaciéon
entre predadores y presas (Berryman et al., [1995). La ley de accién de masas (LAM) es un
formalismo ampliamente utilizado para expresar las velocidades de reaccién de un sistema
(Pico et al., [2015). Con la LAM se describe el comportamiento promedio de un sistema que
consta de muchos componentes que interactian, tales como moléculas que reaccionan entre
si (Ruth and Hannon, |1997). Asi, al aplicar este concepto a un sistema predador-presa, se
establece que la tasa per cdpita de crecimiento de la poblacion de predadores es determina-
da enteramente por la densidad de la presa. En contraste a lo anterior, existen una serie de
sistemas predador-presa que se basan en la Ley de los rendimientos decrecientes, en donde se
establece que la tasa de crecimiento per capita de los predadores esta definida por la densidad
de presas o de la razén predador/presa (Berryman et al., [1995). La tasa de consumo, deno-
minada respuesta funcional, expresa la accién de los predadores en la tasa de crecimiento de
la poblacién de presas, y representa la cantidad de presas que puede consumir un predador
en una unidad de tiempo (Garay-Gonzales, |2020). Dicho concepto se puede entender como la
capacidad predadora de un predador en funcién del cambio de la densidad de la presa (Badii
et al.,[2013). El ec6logo C.S. Holling (1965) exploré este concepto y desarrollé una clasificacién
basada en tres tipos generales de respuesta funcional, denominados respuestas funcionales de
Holling Tipo I, Tipo II y Tipo III (Ver Figura . A continuacion una breve descripcion de
estos.

Tipo I. Esta respuesta funcional se basa en el supuesto que el cambio en la densidad de
la poblacién de predadores es proporcional a la densidad de la poblacién de presas dispo-
nible. Con esto se puede entender que la tasa per cépita de consumo de los predadores es
proporcional a la densidad de presas, existiendo una cantidad umbral ¢, a partir de la cual
la tasa es constante. Este tipo de comportamiento es caracteristico de especies marinas que
se alimentan del fitoplancton y zooplancton, donde el predador se alimenta filtrando el agua
hasta alcanzar el estado de saciedad (Badii et al., 2013). La ecuaciéon que describe este tipo
de respuesta es la siguiente expresion

yr si 0<z<e,
h(z) = (1.1)

yc  si c>uw,

donde x es la densidad de presas.

Tipo II: En este tipo de respuesta, el nimero de presas consumidas por el predador se
incrementa con una tasa decreciente, respecto a la densidad de la presa (Badii et al., 2013).
Esta respuesta funcional es llamada respuesta Monod de tipo hiperbélica, donde el pardametro
v es la tasa maxima de consumo per capita y a es la tasa de saturacién media, es decir, la



cantidad de presas en el que la tasa de depredacién alcanza la mitad de su valor maximo
(Garay-Gonzales, [2020). Esta respuesta funcional es descrita por
Y

h(zx) = PR (1.2)
Tipo III: Los predadores con este tipo de respuesta tienen una dieta basada es distintas
especies de presas y su consumo es proporcional a sus abundancias, cambiando a las especies
mas abundantes y por tanto, permiten que las especies con menor densidad poblacional tengan
oportunidad de incrementar sus poblaciones de nuevo (Badii et al., [2013). Es una respuesta
sigmoidal que incluye la caracteristica de que los predadores son ineficientes cuando los niveles
de presas son bajos, y descrita por

2

h(z) = % (1.3)

Donde v y a tienen el mismo sentido ecolégico que en
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Figura 1.2: Graficas de las respuestas funcionales de Holling
(Smith and Smith} 2007)

Estos tres tipos de respuestas funcionales son funciones crecientes respecto a la poblacion
de presas (Garay-Gonzales, 2020). Un estudio con evidencia experimental determiné que el
puma presenta una respuesta funcional del tipo III (Soria Diaz et al., 2014).
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Modelo de crecimiento logistico

Cuando las poblaciones crecen hasta un punto en donde su aumento se ve limitado por los
recursos del medio ambiente (Capacidad de Carga K) (Figura , se dice que esta poblacién
tiene un crecimiento que se denomina del tipo logistico (Beckerman) 1993)). Este tipo de
crecimiento se modela con la siguiente ecuacién diferencial

dN K—-N

donde N es el nimero de individuos, dN/dt es la tasa de crecimiento de la poblacién en el
tiempo, t representa el tiempo, r es un parametro positivo que representa la tasa maxima de
crecimiento de la poblacién y K es la capacidad de carga del ecosistema (tamano poblacional
méximo que puede mantenerse en un ambiente dado).

Crecimiento logistico

Capacidad de carga

e -

Tamafio poblacional

Tiempo

Figura 1.3: Modelo de crecimiento logistico
(Beckerman/, [1993)

Modelo Lotka-Volterra

El modelo de predador-presa establecido por Lotka-Volterra (Matsuda et al.,|1992) correspon-
de a un sistema de ecuaciones diferenciales de primer orden no lineal utilizado para describir
dindmicas en donde interactian un predador y una presa. Como supuestos del modelo se
establece que las presas poseen suministro de comida ilimitado por tiempo definido, y se re-
producen con una tasa de crecimiento maltusiana que es minorada por efecto
de la predacion. En el caso de los predadores, el crecimiento estd definido por el tamafio
poblacional y su capacidad de consumir a las presas, menos el efecto debido a la tasa de mor-
talidad. Este modelo fue desarrollado en paralelo tanto por Alfred J. Lotka y Vito Volterra
(Entre 1925-1926), y surgié como una aplicacién de la Ley de accién de masas para descri-
bir la dindmica predatoria de dos especies (Berryman et al. [1995). El modelo en su forma

7



matemadtica esta dado por

d
ch = ar = fzy,
(1.5)
Y s
ar Y=Y,

donde y es el nimero de algin predador, z es el niimero de sus presas, dy/dt y dx/dt repre-
sentan las tasas crecimiento de las dos poblaciones en el tiempo, ¢ representa el tiempo y «
B, vy d son pardmetros (positivos) que representan las interacciones de las dos especies.

Ecuaciones diferenciales con retardo

Las ecuaciones diferenciales con retardo (EDR), corresponden a ecuaciones diferenciales fun-
cionales que tienen la particularidad que su derivada se da en términos de los valores de la
funcién en momentos anteriores, con lo que tienen varias aplicaciones para modelar y estudiar
situaciones de caracter biol6gico (Smith, |2011]). En literatura es posible encontrar aplicaciones
de ecuaciones diferenciales con retardo para modelar interacciones entre predadores y presa
(Martin and Ruan 2001}; |Fan and Li, |2007; Kar and Batabyal, 2009; Krisnawan et al., |2019;
Moussaoui et al.l 2015; |Garay-Gonzales| 2020)).

Modelos tipo Nicholson: Este tipo de modelos tiene su origen en los estudios realiza-
dos por Robert May en la década de 1970, los cuales se basaron en los datos generados
previamente por Nicholson (Nicholson, |1954). May colaboré con George Oster, quien junto
con su ayudante, logré formalizar matematicamente estas ideas en lo que comunmente se co-
noce como la ecuacién de Nicholson (Brillinger, 2012). Estudios como los de (Gourley and Wu
(2006)), Berezansky et al.| (2010) y |Ossandén and Sepulveda; (2021) son algunos ejemplos de
las aplicaciones de los modelos tipo Nicholson como lo son modelos de crecimiento de especies,
modelos de areas marinas de protecciéon y modelos de interaccién de predador-presa.

En este tipo de modelos, la reposicién de individuos de una poblacién (Gurney et al., |1980)
esta dada por

R(N) = PNe™o (1.6)

donde N es la cantidad de individuos de la poblacién, R(N) es la funcién de reposicién de
individuos (recruitment rate function), P es la tasa per cdpita méxima de crias y Ny es el
tamano 6ptimo de reproduccién para la poblacion. De este modelo se puede derivar un modelo
que describe la variacién de la poblacién en el tiempo:

N#—Tp)
‘“Zt(t) — PN(t—Tp)e M —8N(1), (1.7)

donde N es la cantidad de individuos de la poblacién, dN/dt representa la tasa crecimiento
de la poblacién, t representa el tiempo, Ny es el tamano éptimo para la poblacién y Tp es un



factor de retardo del modelo.

Modelos predador-presa con retardo: En muchos modelos predador-presa se ignora el
tiempo de demora para la conversién de biomasa de presa consumida en biomasa del pre-
dador, ya sea en forma de crecimiento o reproduccion del tamafio corporal (Amster, 2017)).
Esta situaciéon puede ser subsanada agregando al modelo un factor de “retardo” que incor-
pore informacién de la poblacién hace 7 periodos de tiempo, transformando la ecuacién en
una Ecuacién Diferencial con retardo. A continuacién se presenta un sistema de ecuaciones
diferenciales para un sistema predador-presa desarrollado por Garay-Gonzales (2020):

Cfo — (@ (t) — h(x(t)y(t),
d (1.8)

Yy
at

donde y es el nimero de algin predador, x es el nimero de sus presas, dy/dt y dx/dt represen-
ta las tasas de crecimiento de las dos poblaciones en el tiempo, ¢ representa el tiempo, y(x(t))
corresponde a la funcién de crecimiento de la poblacién de presas, h(z(t)) corresponde a la
respuesta funcional de los predadores a las presas, 8 corresponde a la tasa de mortalidad de
los predadores y 7 corresponde al factor de retardo de los predadores.

= —Py(t) + h(z(t — 7))y(t — 7),

En el presente trabajo se integraron una serie de elementos para definir un modelo matematico
que, mediante el uso de ecuaciones diferenciales con retardo, describa la dindmica predador-
presa para la especie P. concolor.

1.2. Planteamiento del Problema

Es posible encontrar una serie de publicaciones cientificas y estudios recientes relacionados a
la teméatica de modelos predador-presa, donde destacan temas como el andlisis de los patrones
temporales en funcién de distintas respuestas funcionales (Majumdar et al., [2022; |[Naik et al.,
2022a; |Jana and Kumar Roy, |2022; Barman and Ghosh, [2022)) y los Efectos Alle y del miedo
en las presas (Li et al| |2022; Naik et al., [2022b} |Devi and Jana, 2022; |Lan et al., 2022; |Gokge,
2022). Dentro de la literatura actual no existen modelos que integren las ecuaciones diferen-
ciales con retardo, las respuestas funcionales y los modelos tipos Nicholson para la especie P.
concolor. Dado que esta especie se encuentra con problemas de conservacion, es importante
contar con herramientas que ayuden a simular distintos escenarios y cuantificar el nivel de afec-
tacién y la respuesta de esta especie frente a distintas perturbaciones. Es en este contexto que
surge la pregunta acerca de la posibilidad de crear un modelo, enfocando su funcionamiento
segun las caracteristicas predatorias del Puma. Ademas de esto, los antecedentes recolectados
del estudio de Rumiz| (2010) y monitoreo llevado a cabo por el [Proyecto-GEF| (2021), dan
un fundamento para poder extender este modelo a uno con movimiento del predador entre
distintos parches.



1.2.1. Objetivos
Objetivo General

Proponer un modelo matematico ecolégico que describa la relacion existente entre predador
(Puma concolor) y sus presas mediante el uso de los modelos tipo Nicholson y Logistico bajo
distintos escenarios de parametros poblacionales.

Objetivos Especificos

1. Definir un modelo matematico que integre la ecuaciéon de Nicholson y el modelo Logistico
para una dindmica predador-presa.

2. Analizar las propiedades cualitativas del modelo matematico planteado con uno y dos
parches.

3. Evaluar mediante simulaciones matemaéticas los potenciales escenarios para la interac-
cién entre la poblacion de Puma concolor y sus presas.
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Capitulo 2

Marco teoérico

En este capitulo se presentaran algunos resultados fundamentales de la teoria de Ecuacio-
nes Diferenciales con Retardo (EDR). Los principales aspectos a tratar son la existencia de
soluciones de EDR, los sistemas lineales de EDR, la ecuacién caracteristica, el principio de
estabilidad linealizada, un resultado de estabilidad absoluta, para concluir con un apartado
acerca de la resolucién numérica de EDR en R. El presente capitulo estéd inspirado en el texto
de Smith| (2011), por lo que las demostraciones son omitidas. Para el lector interesado en
profundizar en la teoria de EDR se recomienda el libro de |Hale and Lunel| (1993).

2.1. Existencia de soluciones de ecuaciones diferenciales con
retardo

Considere la ecuacién diferencial con retardo no lineal

'(t) = f(t,z(t),x(t — 7)) (2.1)

con retardo r > 0. Se asume que f(t,z,y) y fz(t,7,y) son funciones continuas sobre R3. Sea
s€Rdaday ¢ :[s—7,s] — R una funcién continua. Es de interés encontrar una solucién
z(t) de la ecuacién (2.1)) con condicién inicial

z(0) =¢0), s—17<60<s. (2.2)

Note que se debe interpretar z’(s) como la derivada por la derecha en s. A continuacién
se expone cémo resolver la ecuacion por el método de los pasos, que consiste en una
estrategia muy intuitiva. Consideremos el intervalo s < ¢ < s + 7, sobre este intervalo x(t)
debe satisfacer el problema de valor inicial:

y/(t) = f(tay(t)7¢(t - T))v y(e) = ¢(6)a s < 0 <s+T.

De esta manera se obtiene una ecuacion diferencial ordinaria (EDO), y puede ser estudiada
la existencia de soluciones (locales) utilizando la teoria de EDOs. Si esta solucién local y(t)
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existe para todo t tal que s <t < s+ 7, entonces la solucién z(t) = y(t) puede ser definida
sobre todo el intervalo [s — 7, s + 7] y es posible repetir el argumento anterior para extender
esta solucién ain mas a la derecha. De hecho, para s + 7 < t < s + 27, una solucién z(t) de

y debe satisfacer el PVI:
y'(t) = f(ty(t),z(t—7)), yO)=00),s<O<s+T

Una vez maés, los resultados de existencia para este tipo de problemas garantizan la existencia
de una tnica solucién, que se denota por x(t), definida sobre un subintervalo [s + 7,0) C
[s + 7, s + 27], posiblemente el intervalo entero. De esta manera, z(t), ahora definida sobre
[s —r,0) con ¢ > s+, es una soluciéon de y ([2:2). Si la solucién existe sobre todo el
intervalo [s + 7, s + 27| entonces es posible repetir este proceso para extender la solucién al
intervalo [s 4 27, s + 37|, o algin subintervalo de este.

Teorema 2.1. [(Smith|, (2011, pp. 26)] Sean f(t,z,y) y fz(t,z,y) funciones continuas sobre
R3, s € R, yseap : [s—T, s = R continua. Entonces existe § > s y una tinica solucion del

problema del valor inicial sobre [s — T, d]:

{x’(t) = f(t,x(t),z(t — 7)) (2.3)

z(0) =¢0),s —T7 <0 <s.

Teorema 2.2. [(Smith,|2011, pp. 27)] Suponga que la funcion f: R xR} xRY — R satisface
las hipdtesis del Teorema[2.1], y

Vi, t; Vo, y € RY se tiene que x; = 0 = fi(t,z,y) > 0. (2.4)

Si el dato inicial en satisface ¢ > 0, entonces la correspondiente solucion x(t) de
satisface x(t) = 0 para todo t > s donde ella este definida.

Teorema 2.3. [(Smith, 2011, pp. 26)] Supongamos que f satisface las hipdtesis del teorema
2.1y sea x : [s — 7,0) — R la solucion no continuable del problema de valor inicial . St
d < 0o entonces:

lim |z(t)| = 4o0.

t—6—
Las ecuaciones diferenciales con retardo pertenecen a una clase de ecuaciones diferenciales méas
abstractas, denominado ecuaciones diferenciales funcionales. A continuacién introduciremos
algunas definiciones de este contexto, principalmente porque su notacion resulta muy tutil.

Definicién 2.1. Si x es una funcion definida, al menos, sobre [t — T,t] — R™, entonces
podemos definir una nueva funcion x; : [—1,0] — R™ por medio de la identidad

zi(o) =z(t+0) para — 71 <o <0.
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Note que x; se obtiene al considerar x(s) para t — 7 < s < t y entonces trasladamos este seg-
mento x al intervalo [—7,0]. Si z es una funcién continua, entonces z; es una funcién continua
sobre [—T, 0].

El conjunto C'([—7,0],R™) de todas las funciones continuas que van desde [—7,0] — R"™ sera
denotado por C. Si A es un subconjunto de R™, entonces C([—, 0], A) serd denotado por C4.
La notaciéon z; es conveniente, pues permite escribir las EDRs de una forma abreviada, por
ejemplo podemos escribir la ecuacién en la forma

1'/(t) = f(ta x(t)vxt)
Se enfatizara en el problema de valor inicial para el sistema no auténomo

2t) = flt,x), t>o,
(2.5)
Lo = (b,

donde o € R es el tiempo inicial y ¢ € C es el estado del sistema en el tiempo o. Esto quiere
decir que
z(0) = ¢(0), —17<6<0.

Se denota por |z| a la norma de un vector x mientras que la norma de una funcién (vectorial)
en C sera definida por

¢l = sup{[o(0)] : —r <0 < 0}.

Aparte de la continuidad de f, se asume que dicha funcién satisface una condicién de Lipschitz
sobre cada subconjunto de R x C, es decir, para todo a,b € Ry M > 0, existe una constante
K tal que:

[f(t, @) = F(t, )| < Kl = ¢lf, a <t <, [[9]], [[¥]] < M. (2.6)

Note que la constante K puede depender tanto de las constantes a,b como de M. A conti-
nuaciéon se encontrard una solucién de sobre el intervalo [0, 0 + A] para algin A > 0.
Integrando a ambos lados y aplicando el teorema fundamental del célculo, se obtiene que x(t)
debe ser una solucién continua de la ecuacién integral

2(t) = $(0) + /Utf(s,ms)ds, o<t<o+ A (2.7)

y ademas z(0) = ¢(0),0 —r < 6 < o. A continuacién se enuncia un resultado de existencia
general.

Teorema 2.4. [(Smith, 2011, pp. 32)] Sea f una continua satisfaciendo la condicion de
Lipschitz[2.1, o € R, y M > 0. Eziste una constante A > 0, que depende solo de M tal que si
¢ € C satisface ||¢|| < M, entonces existe una tinica solucion x(t) = z(t,d) de (2.5), definida
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sobre [0 — r,0 + A]. Ademds, si K es la constante de Lipschitz para f que le corrseponde a
0,0 + A] y M, entonces

méx  [a(n,0) —x(n,9)] < [|o =l [[g]], || < M. (2.8)

oc—r<n<c+A

Remark 2.1. Si f satisface una condicion de Lipschitz global, es decir, si K en puede ser
elegida independiente de a,b y M, entonces no necesitamos hacer restricciones sobre A en
el teorema[2.4. En otras palabras, su conclusion es valida para todo A > 0. En este caso, la
solucion existe para todot > o.

El concepto de estabilidad es fundamental para diversos fenémenos de evolucién, y su concepto
opuesto se conoce como caos. En este caso es de interés estudiar la estabilidad de las soluciones
de EDRs y a continuacién se introduciran algunas definiciones dadas en Hale and Lunel (1993).
Considerare el sistema de EDR dado por

a'(t) = f(t, ).
Suponga que satisface f(¢,0) =0, ¢ € R siempre que z(¢) = 0 es solucién.
Definicion 2.2. Se definen las siguientes clasificaciones para las soluciones x = 0:

» La solucion © = 0 es estable si para cada 0 € R y € > 0, existe un 6 = §(o,€) > 0 tal
que ¢ € C y ||¢|| < 0 implican que ||z(o, P)|| < €, parat > o.

» La solucion x = 0 es asintéticamente estable si es estable y ademds, existe b(o) > 0
tal que cada vez que ¢ € C y ||d|| < b(o), entonces z(t,o,¢) — 0, t — oo.

= Finalmente, se establece que x = 0 es inestable si ella no es estable.

La estabilidad de cualquier otra solucién del sistema puede ser definida, haciendo un
cambio de variables de manera que la solucién en cuestion corresponda ahora a la solucién
cero. Més precisamente, dada una solucién y(t) de definida sobre ¢ € R, sus propiedades
de estabilidad son las mismas que aquellas de la solucién cero de la EDR

2(t) = f(t,ze +ye) — [t ). (2.9)

En efecto, si z(t) es otra solucién de considere z(t) = x(t) — y(t) entonces z; = ¢ — yt, y
z satisface . El caso especial en que y(t) = e, un equilibrio, es de mayor interes. En este
caso, sea € € C la funcién constante indénticamente igual a e. Entonces la ecuacién (2.9)) para
la perturbacién z(t) = x(t) — e se convierte en

Z(t) = f(t,ze +¢é).
Note que este cambio de variables convierte el equilibrio y(¢) = e en z(t) = 0.
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2.2. Sistemas Lineales Auténomos

Incluso cuando se esta interesado solo en soluciones que tomen valores en el conjunto de los
nameros reales, es Gtil permitir a las soluciones que tomen valores complejos. Por tal motivo,
se modifica el espacio C por C = C(|—r,0],C"). Un operador L : C — C" es lineal si satisface:

L(ad + b)) = aL(¢) + bL(¥), ¢4 €C,abeC.

Se dice que L es acotado si existe K > 0 tal que

IL(#)] < Kl[¢ll, ¢€C.

El objetivo en este capitulo es considerar algunos aspectos de la EDR lineal
2/ (t) = L(zy). (2.10)

Se asumird a lo largo de este trabajo que L es un operador lineal y acotado. Un ejemplo
importante es el caso con retardo discreto. Considere A y B matrices de tamafio n X n y se
define:

L(¢) = Ap(0) + Bo(—).
Entonces
IL(9)| < [Al|¢(0)] + [Blle(—=7)| < (IA] + [B])¢l],
asi L es acotado. Luego la ecuacién toma la forma

2'(t) = Az(t) + Bx(t — 7). (2.11)

La ecuacién (2.10]) corresponde a un sistema auténomo, por lo tanto se restringe a una con-
dici6n inicial definiendo los valores de x sobre [—7, 0], es decir:

a(t) = o(t), -r<t<0, ¢eC. (2.12)

Debido a que L es un operador lineal acotado, este satisface la siguiente condiciéon de Lipschitz
global

[L(¢) — L(¥)| = [L(¢ — ¢)| < Ll|¢ — ¢,

para algin L > 0.

Consecuentemente, el teorema aplica para el PVI (2.10]) y (2.12)). Luego, existe una tnica
solucién maximal z : [—r,00) — C™ definida para todo ¢t > 0. Los sistemas lineales de la forma

(2.10) cumplen el principio de superposicion: una combinacién lineal de soluciones es también
una solucioén.

Proposicién 2.1. [(Smath, (2011, pp. 42)] Sea z(t, ®) a la solucion del PVI Yy .
Entonces la funcion que lleva ¢ en x(t, ) es lineal:

x(t,ap + bb) = ax(t, d) + bx(t, ), t>0,¢,9€C,a,beC.
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2.3. La Ecuacion Caracteristica
Son de interés las soluciones de (2.10)) que tengan la forma
z(t) =eMv, v#£0,

donde X es un niimero complejo y v es un vector cuyas componentes son también nimeros
complejos.

Es util introducir la notacién exp, para la funcién continua definida en [—7,0] por medio
de la identidad
expy(0) = e, 6 e[-7,0].

Usando esta notacion, se observa que el estado z; € C([—7,0]; C") correspondiente a x(t) es
zy = eM(exp, )v. En efecto,

x4(0) = z(t+0) = M)y = My = M expy(@)v, 6 € [-7,0].
Para que z(t) sea una solucién, se debe tener

2/ (t) = AeMv = L(zy) = eML(exp, v)

Av = L(expy v).
Escribiendo v = 37, vje; donde {e;}; es la base canénica de C" y v; € C, se obtiene que

L(expy v) = L(exp, Zvjej) = Zij(epr e;).
J J

Por otra parte, se define una matriz Ly € C"*" cuyas columnas vienen dadas por L(exp, e;) €
C"™, en otras palabras

Ly= [L(GXP,\ e1)  L(expyez) -+ L(expy €n)} :

Asi L(expy v) = Lyv. Luego
Av = L(expy v) = Lyv,
A —Lyw=0
(M = Ly)v=0

y se tiene que z(t) = eMwv es una solucién distinta de cero de la EDR lineal ([2.10) si A es
solucién de la ecuacion caracteristica:

det (A — Ly) = 0. (2.13)
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En este caso, v # 0 debe pertenecer al kernel del operador A\I — L. Usualmente les llamamos
valor propio a cada niimero complejo A que satisfaga (2.13)). Para el caso especial de la ecuacion
(2.11)) se tiene que L(z;) = Ax(0) + Bxy(—r) y por lo tanto

M = L(exp, v) = Av + Be *"v.
Esto permite expresar su ecuacién caracteristica como:

det (M = A—¢™B) = 0. (2.14)

2.3.1. Funciones Analiticas

El plano complejo C es el conjunto de todos los nimeros complejos z = z+1y, tal que x,y € R.
Como es usual la parte real e imaginaria de z se definen, respectivamente, por R(z) = z y
J(z) = y. La norma de z es definida como |z| = (2% + y2)/?
zZ=x—1y.

. El conjugado complejo de z es

Una funcién de variable compleja que toma valores complejos f : D — C, donde D C C,
puede representarse como:

w = f(2) = u(z) +iv(z) = u(z,y) +iv(z,y),
donde u y v son funciones que toman valores reales definidas sobre el dominio D, que ahora
puede verse como un subconjunto del plano (z,y).

Definicién 2.3. Se entiende que f es analitica sobre D si D es un conjunto abierto y f es
diferenciable en cada punto de D, en el sentido que
f/(zo) — lim f(z) = f(20)
Z—20 Z— 20
existe en cada punto zg € D. Si f es analitica sobre todo C entonces se dice que f es una
funcion entera.

El teorema integral de Cauchy es un hecho destacable sobre funciones analiticas. A continua-
cién se mencionan algunas de sus consecuencias:

1. Una funciéon analitica es infinitamente diferenciable.

2. La expansion en serie de Taylor de una funcién analitica converge y representa dicha
funcién.

3. Una funcién analitica que no es idénticamente cero en su dominio (conexo) tiene ceros
aislados.

Proposicién 2.2. [(Smith|, |2011, pp. 151)] Sea f analitica sobre un dominio conexo D, no
idénticamente cero en D, y sea K un subconjunto cerrado y acotado de D. Entonces f tiene a
lo mds finitos ceros en K. Si f es una funcion entera, entonces ella tiene a lo mds numerables
ceros; y si ella tiene infinitos ceros y {zn}nen s una enumeracion de ellos, entonces |z,| — 00
cuando n — oo.
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2.3.2. Propiedades de la ecuacién caracteristica

Esta seccién comienza notando que h, definida por h(\) = det(AI — L)), es una funcién
analitica definida para todo A € C, esto es, una funcién entera, analitica en todo el plano
complejo.

Lema 2.1. [(Smith, 2011}, pp. 46)] h(\) = det(A — L)) es una funcién entera.

A continuacién se mencionan las propiedades que tiene h(\) debido a que se trata de una
funcién entera no trivial:

1. Cada raiz caracteristica tiene orden finito.
2. Existen a lo sumo numerables raices caracteristicas.
3. El conjunto de raices caracteristicas no tiene punto de acumulacién finito.

Un hecho destacable es que hay un ntmero finito de raices caracteristicas con parte real
positiva.

Lema 2.2. [(Smith|, 2011, pp. 46)] Dada una constante o € R, existen a lo sumo un nimero
finito de raices caracteristicas que cumplen R(X) > o. Si existen infinitas raices caracteristicas
distintas {\n}n, entonces

R(\,) = —00, n — 0.

Una consecuencia importante del lema [2.2] es que existe 0 € R y un conjunto finito de rdices
caracteristicas dominantes que tienen parte real igual a o mientras que todas las otras raices
tienen parte real estrictamente menor que o. En las aplicaciones, las raices caracteristicas
complejas vienen en pares conjugados.

Proposicién 2.3. (Smith, (2011, pp. 47) Suponga que L mapea funciones reales en vectores
reales: L(C'([—7,0],R™)) C R™. Entonces A es una raiz caracteristica si y solo si A es una raiz
caracteristica.

El resultado principal de esta seccion tiene relaciéon con la estabilidad de la solucién x = 0 del

sistema ([2.10)).

Teorema 2.5. [(Smith|, 2011, pp. 47)] Suponga que R(\) < p para toda raiz caracteristica A.
Entonces existe K > 0 tal que para todo ¢ € C

z(t,9)| < KeM[|¢]|, t>0, (2.15)

donde x(t,¢) es la solucion de (2.10}) con condicion inicial xo = ¢. En particular, x = 0
es una solucion de asintdticamente estable si R(A) < 0 para toda raiz caracteristica;
mientras que es inestable si existe al menos una raiz que cumpla R(A) > 0.
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A modo de conclusién, para determinar la estabilidad o inestabilidad de los equilibrios de un
sistema de ecuaciones diferenciales lineales es fundamental conocer las raices caracteristicas,
sin embargo en el caso de los sistemas de ecuaciones diferenciales lineales con retardo esto
se vuelve més dificil atin que en el caso ordinario. En la monografia de [Michiels and Nicu-
lescu| (2007) se describen métodos computacionales para determinar las raices caracteristicas
criticas, aquellas que tienen la mayor parte real.

2.4. Principio de Estabilidad Linealizada

Considere la ecuacién diferencial funcional no lineal

2 (t) = f(xy). (2.16)
Entonces z(t) = o € R™ es una solucidn de estado estacionario de (2.16]) si y solo si
f(@o) =0,

donde %y € C es la funcién constantemente igual al vector xg. Si z(t) es una solucién de ([2.16))
y considere
z(t) = xo + y(t)
entonces y(t) satisface
! A
y (1) = f(Zo + ye)- (2.17)
Se quiere comprender el comportamiento de las soluciones de ([2.16]) con condiciones iniciales

cercanas a Iy y para esto, es suficiente comprender el comportamiento de las soluciones de
(2.17)) con condiciones iniciales cercanas a y = 0. Asumiendo que

f(@o+¢) = L(¢) +9(¢), ¢€C, (2.18)

donde L : C — R" es una funcién lineal y acotada y g : C — R"™ es de orden superior en el
sentido que

. lg(e)|
(},IL% ol = 0. (2.19)

Observe que [2.19| es equivalente, a que para cada € > 0, existe § > 0 tal que
oIl < 6 = |g(d)] < ello]]-

El sistema lineal asociado a ([2.17)
2 (t) = L(z), (2.20)

se denomina la ecuacion linealizada o la ecuacién variacional alrededor del equilibrio Zy. De-
bemos estudiarla sobre el espacio complejo C([—T,0],C").

El siguiente es el resultado principal de esta seccién. Su demostracién puede encontrarse
en el libro de Hale and Lunel (1993).

19



Teorema 2.6. [(Smith, (2011, pp. 55)] Denotemos A(X) = 0 la ecuacion caracteristica de

y suponga, que
—o:= max R(\) <O0.
AN)=0

Entonces g es una solucion de estacionaria asintéticamente estable de . Es decir, existe
b >0 tal que

ot

o = Zol| <b=[lz(d) — Zol| < K|¢ — Zolle™>, =0.
Si R(A) > 0 para alguna raiz caracteristica, entonces &g es inestable.

Consideremos el siguiente caso especial de ([2.16))
2(t) = F(z(t), z(t —r)), (2.21)

donde F': D x D — R"™ es continuamente diferenciable y D C R™ es abierto. Si F'(xg,z9) =0
para algin xo € D, entonces z(t) = zp, t € R es una solucién. Asi f(¢) = F(¢(0),6(—7)) v

se convierta en estacionaria de
f(Zo0 + @) = Ad(0) + Bo(—7) + G(¢(0), ¢(—7)),

donde A = Fy(xo,20) y B = Fy(x0,x0). Por lo tanto, el sistema linealizado alrededor de

x = xzq para (2.21) es
2'(t) = Az(t) + Bz(t — 7). (2.22)

2.5. Estabilidad absoluta

Con frecuencia, al estudiar ecuaciones diferenciales con retardo lineales, la ecuacién carac-
teristica asociada toma la forma

p(A) +g(N)e ™ =0, (2.23)

donde p y ¢ son polinomios con coeficientes reales y r > 0 es el retardo. Por ejemplo, la
ecuacion caracteristica para un sistema planar (o bidimensional) tiene esta propiedad cuando
det(B) = 0. Este es un caso tipico pues con frecuencia una ecuacioén tiene solo un argumento
retardado. En general, p tiene un grado més alto que ¢. Brauer| (1987) probé el siguiente
resultado:

Proposicién 2.4. [Brauer (1987)] Sean p,q polinomios con coeficientes complejos. Suponga
que:

1. p(\) # 0, R(\) > 0.
2. p(—iy) = p(iy), q(—iy) = q(iy) para 0 <y < oo.
3. |q(iy)| < Ip(iy)], 0 <y < oo.
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4- My Soo ;)0 [2(A) /P(A)] = 0.
Entonces R(N) < 0, para toda raiz X y todo r > 0.

La conclusién de la proposicion se denomina estabilidad absoluta, puesto que la estabi-
lidad es valida para cualquier valor del retardo.

2.6. Ecuaciones diferenciales con retardo en R

La libreria deSolve de R resuelve las Ecuaciones Diferenciales con Retardo (EDRs) aplicando
el mismo procedimiento que utiliza en las Ecuaciones Diferenciales Ordinarias (EDOs), con
la excepcién de que en las EDRs presentan un término de “memoria” que trabaja con valores
pasados de la variable dependiente o de sus derivadas (Soetaert et al., 2012)). En deSolve, esta
implementada la funciéon dede, que puede integrar numericamente una EDR y a la vez tener a
disposicion los valores pasados de los estados y sus derivadas pasadas a través de las funciones
lagvalue y lagderivs respectivamente. Una sintaxis simplificada de estas funciones es:

dede (y, times, func, parms, method, ...)
lagvalue (t, nr)
lagderiv (t, nr)

El argumento ¢, de las funciones lagvalue y lagderiv, corresponde el tiempo para el que se
desea el valor rezagado; este no debe ser mayor que el tiempo de simulacién actual ni menor
que el tiempo de simulacién inicial. Mientras, nr es el nimero del valor rezagado. Si no se
especifica un valor para nr, se devuelven todas las variables de estado o derivadas. Dentro del
funcionamiento de dede se pueden utilizar diferentes solvers que usan una serie de métodos
de integracion, donde los més destacables son: Método de Adams, Método BDF y Método de
Runge-Kutta. El solver a utilizar se ingresa como el argumento method de la funcién dede.
Cuando no se especifica un solver en particular, dede utiliza por defecto Ilsoda, que trabaja
cambiando automaticamente entre métodos de solucién de PVI rigidos y no rigidos. Esto sig-
nifica que el usuario no tiene que determinar si el problema es rigido o no, y el solver elegira
automaticamente el método apropiado.

Cabe mencionar que esta funcién no incluye métodos para lidiar con retrasos que son mas
pequenos que el tamano del paso con el que implementa. Por esta razon, solo puede resolver
ecuaciones diferenciales de retardos simples.

Como ejemplo, se presenta la siguiente EDR con retardo discreto

y =—yt—-1) (2.24)
y(t) =1, tel-1,0],

en donde la derivada de la solucién en t depende del valor de la soluciéon en t — 1. La imple-
mentacién de la solucién de la ecuacion (2.24) en R, utilizando dede, corresponde a
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library(deSolve)

DDE1 <- function(t, y, parms) {
tlag <-t - 1
if (tlag <= 0)

ylag <- 1
else
ylag <- lagvalue(tlag)
list(dy = - ylag, ylag = ylag)
}
yinit <- 1

times <- seq(from = 0, to = 10, by = 0.1)
yout <- dede(y = yinit, times = times, func = DDEl, parms = NULL).

En este ejemplo, la variable yout, almacena la serie de tiempo de los valores que toma y(¢) en
el intervalo de [0; 10], en pasos de 0.1 unidades de tiempo.

Para mayores detalles acerca de la resolucién de EDRs en R, se recomienda visitar el Capitulo
7 de |Soetaert et al.| (2012]).
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Capitulo 3

Metodologia

El desarrollo de esta investigacién involucrd una serie de pasos secuenciales que permitieron
alcanzar el objetivo de proponer un modelo matematico ecolégico que describa la relaciéon
existente entre el Puma y sus presas, mediante el uso de los modelos tipo Nicholson y Logisti-
co bajo distintos escenarios de parametros poblacionales. Primero se realizé6 una btsqueda
de los antecedentes bibliograficos que hicieron posible desarrollar el modelo planteado. Lue-
go se integraron los distintos elementos en un modelo y se describieron sus componentes y
caracteristicas principales, demostrando algunas propiedades fundamentales de este. Una vez
validado este modelo se realizaron simulaciones con diferentes combinaciones de parametros,
lo que permitié caracterizar diferentes comportamientos a largo plazo de las soluciones. Pos-
teriormente se extendié el modelo predador-presa para un escenario en donde existen dos
parches interconectados por corredores biolégicos, los cuales permiten la migracién de pumas
entre estos. Para este modelo extendido se realizaron simulaciones y se clasificaron los resulta-
do obtenidos. Luego de obtener una caracterizaciéon del comportamiento de las soluciones del
modelo, se procedid a plantear escenarios especificos en donde se realizaron perturbaciones en
el sistema, contrastando los resultados con la respuesta del sistema sin esta modificacién. El
diagrama de la Figura [3.1], esquematiza la metodologia utilizada.

3.1. Caracteristicas del modelo

Se formul6é un modelo predador-presa en base a los antecedentes recopilados durante la revi-
sion bibliografica. Este modelo se ajusta a las caracteristicas ecolégicas de P. concolor consi-
derando sus habitos predatorios, crecimiento y dindmica de las presas. Las caracteristicas del
modelo resultante fueron discutidas segin los atributos claves de credibilidad de los modelos
identificados por (Berryman et al., [1995):

Atributo 1: La tasa de incremento per cépita de las presas disminuye con la densidad de

predadores, es decir, hay un efecto negativo de los predadores sobre la presa.
Atributo 2: La tasa de aumento per capita del predador deberia aumentar con la densidad
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Figura 3.1: Diagrama de la metodologia del estudio

de presas: es decir hay un efecto positivo de las presas sobre los predadores.

Atributo 3: Los predadores deben tener apetitos finitos y en consecuencia tasas maximas de
reproduccion.

Atributo 4: Cuando la comida u otros recursos son escasos, relativos a la densidad de po-
blacién, la tasa per capita de incremento de predadores deberian disminuir con el incremento
de la densidad de predadores.

Estas caracteristicas ayudan a validar que el modelo tenga un comportamiento razonable
desde un punto de vista biologico y ecolégico.

3.2. Existencia de soluciones no negativas
Siguiendo la metodologia planteada por Smith! (2011)), se demostro la existencia de soluciones

del modelo. En particular un problema de valor inicial con dato inicial no negativo genera
una solucién no negativa.
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3.3. Andlisis de soluciones de estado estacionario

Se determinaron las soluciones estacionarias, las cuales fueron estudiadas cualitativamente
mediante la linealizacién del modelo y posterior andlisis de la ecuacion caracteristica asociada
(Brauer, [1987). La aplicacién de esta teoria se vio limitada en los casos en que las ecuaciones
caracteristicas del sistema de ecuaciones diferenciales eran dadas por expresiones algebraicas
con muchos términos, puesto que su resoluciéon por las vias tradicionales hubiese implicado
tiempos que sobrepasarian los plazos definidos para el desarrollo de esta investigacién. Aun
asi, fue posible plantear condiciones de estabilidad absoluta para uno de los equilibrios del
sistema. Las ecuaciones matematicas de los puntos de equilibrio de mayor dificultad se resol-
vieron computacionalmente utilizando la libreria sympy de Python Meurer et al.|(2017). Una
limitacién de este trabajo que podria abordarse en futuros estudios, es realizar un analisis de
bifurcaciones de Hopf que complementaria el andlisis de estabilidad.

3.4. Extension del modelo a dos parches

Se extendié el problema a dos parches, ampliando el sistema a uno de cuatro ecuaciones
diferenciales. Para lograr esto se asocié una ecuacién para la variacion temporal de presas y
otra para la variacion temporal del predador para cada uno de los parches. Se incorporaron
tres funciones distintas para modelar el flujo migratorio entre los parches. La primera funcién
considera una migracion constante entre los parches, similar a lo que se plantea en el modelo
de Levins (1969). La segunda esta basada en una funciéon denso dependiente, desarrollado por
Huang and Diekmann| (2001)). La dltima funcién es una propuesta original de este trabajo,
una migracion regulada por una relaciéon radio dependiente entre las poblaciones de presas de
los parches.

3.5. Simulacién

Las simulaciones matematicas para los modelos con un parche y con dos parches, se realizaron
para analizar el comportamiento del predador y la presa bajo distintos valores de los parame-
tros. Estas simulaciones se ilustraron mediante el uso de las librerias ggplot2 (Wickham et al.|
2016)) y reshape (Wickham and Wickham, 2015)) del programa R. Las ecuaciones diferenciales
con retardo fueron resueltas mediante las funciones disponibles en la libreria deSolve de R
(Soetaert et al.,|2015). Se propuso un valor para el retardo 7 del modelo de 27 meses, que con-
sidera el tiempo de gestacién y periodo de desarrollo de la especie, mientras que se consideré
un valor inicial de un individuo de predador en 100 km? y 200 presas en 100 km?. Para las
simulaciones del modelo extendido, se incorporé un segundo parche con una densidad inicial
de predadores de dos pumas por km?, mientras que para las presas se asigné una poblacién
de 300 presas por cada 100 km?. Debido a la diferencia de magnitudes de las densidades de
predador y presas, estas ultimas fueron representadas en escala logaritmica.
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3.6. Escenarios potenciales

Para complementar los andlisis realizados se incluy6 la evaluacion de tres escenarios potencia-
les asociados a alteraciones y amenazas reales a las que se encuentran sometidos los ecosistemas
en donde habita el Puma. Los escenarios propuestos fueron:

a) Reduccién de la poblacién de presas: Se realiza una remocién sistemética de un porcen-
taje de las presas cuando estas sobrepasan un cierto umbral.

b) Reduccion de la poblacién de predadores: Se realiza una remocion sistematica de un
porcentaje de los pumas cuando estos sobrepasan un cierto umbral.

c¢) Limitacién de la migracién: En base al modelo de dos parches con migracién radiode-
pendiente, se aplica un factor al componente migratorio del sistema que reduce su valor
a un 30 %.

Para realizar los andlisis de los dos primeros escenarios se siguié el procedimiento numérico
que se plantea en el subcapitulo 7.6 del libro de [Soetaert et al.| (2012).
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Capitulo 4

Resultados y Discusiones

En este capitulo se muestran los principales resultados de este estudio, en donde se propone
un modelo matemaético ecoldégico que describe la relaciéon existente entre el Puma y sus presas,
mediante el uso de los modelos tipo Nicholson y Logistico junto con distintos escenarios de
parametros poblacionales. Comienza con el estudio del modelo propuesto para un parche, sus
propiedades cualitativas y las principales simulaciones numéricas realizadas. Luego se analiza
el modelo expandido a dos parches con las variantes de mecanismos migratorios, comparando
las distintas simulaciones que se hicieron para cada uno ellos. Por tltimo, se expone el anélisis
de los distintos escenarios potenciales aplicado a uno de los modelos de dos parches.

4.1. Estudio del modelo con un Parche

Se determind y se estudiaron las caracteristicas de un modelo de ecuaciones diferenciales con
retardo, en donde se asocié al predador una respuesta funcional Holling del tipo III y un
crecimiento determinado por la ecuacion de Nicholson. Este tipo de ecuacién, al incorporar
una funciéon de reclutamiento tipo Ricker, le incorpora al modelo el efecto de la competen-
cia intraespecifica que se genera en los predadores, y de manera intrinseca, la capacidad de
carga del ecosistema. El crecimiento poblacional de las presas se model6 con una ecuacién de
crecimiento del tipo logistico.

4.1.1. Formulaciéon del modelo

Partiendo del modelo de (Garay-Gonzales| (2020) representado en la ecuacién (1.8)) e incor-
porando los elementos mencionados con anterioridad, se llegd a la deduccion del siguiente
modelo predador-presa:
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(K20 - 220

at K a® + z(t)2”

t>0 (4.1)
dy y(t — )2 —y(t—7)
dt 5y()+a2+x(t—r)2y( e

donde 7 es un retardo discreto, x(t) representa la poblacién de presas en el instante ¢ e y(t)

la poblacién de predadores adultos en el instante ¢, dx/dt y dy/dt representan las tasas cre-

K-z
cimiento de las dos poblaciones en el tiempo, n(z) = r(K> corresponde a la funcién de

2
x
crecimiento de la poblacién de presas, h(z) = 274_ 5 corresponde a la respuesta funcional
a’+x
de los predadores a las presas y [ representa a la tasa de mortalidad de los predadores. Los

parametros presentes en el modelo son los siguientes:

Cuadro 4.1: Parametros de simulaciéon en el modelo y su definicién ecologica

Pardmetros Descripcion

Tasa de reproduccién de las presas

Capacidad de carga

Tasa de saturacién media predador

Tasa maxima de consumo per cépita predador

Tasa de mortalidad predador

Tamano 6ptimo de reproducciéon para la poblacién del predador

ZQQQNﬁ

Para simplificar la notacién del sistema denotaremos, como es usual en la literatura de ecua-
ciones diferenciales con retardo, z(t) = z, y(t) =y, x(t — 7) = 2y y y(t — 7) = y¢, expresando
el sistema como:

t>0 (4.2)

4.1.2. Discusion acerca del modelo a priori

Segtn los criterios de credibilidad de los modelos identificados por Berryman et al.| (1995),
se puede decir que los predadores si tienen un efecto negativo sobre las presas, ya que en
términos generales, al aumentar su nimero disminuye el de las presas. Asi mismo, al aumentar
la densidad de las presas se tiene un incremento en la tasa de aumento per capita de los
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predadores. Los predadores presentan una tasa de reproduccién acotada, que alcanza un
maximo para un tamano 6ptimo de la poblacién, y para valores mayores de la poblacién esta
tasa va disminuyendo a medida que se densifica su poblacion.

4.1.3. Existencia y unicidad de soluciones no negativas

Proposicién 4.1. FEl sistema admite una unica solucion maximal para cada condicion
inicial (¢,1) € C([—r,0],R?).

Demostracién. Se definen los vectores W y Z en R? dados por:

- (1) 2= (2)

Luego, el lado derecho de (4.2) puede escribirse como:

T(Kﬁwl)w wi w
_ (AW Z)) _ K P arrw?

Al inspeccionar la funcién , esta es continua sobre R* ya que su primer término es del tipo
polinomial y el segundo y tercero son racionales pero divididos por expresiones que siempre
seran distintas de 0, por lo que no presentan discontinuidad. La matriz jacobiana fy (W, Z)
corresponde a la siguiente expresion:

ofi  Ofr T _ _ 2ydlwiws ywy
fw<w,z>=<%?; %‘ﬁ): A e (1.4)

dwi Dz 0 -3

Notemos que la matriz (4.4)) solo depende de w1 y wo. Ademds esta es continua sobre R?, por
lo que al aplicar el Teorema [2.1| y se puede asegurar la existencia de soluciones locales del
problema de valor inicial de la forma del sistema (2.3]) en un intervalos sobre [s — r, §]. [

Proposicién 4.2. Dada una condicién inicial (¢,1) € C([—r,0],R?) no negativa, entonces
la solucion mazimal del sistema asociada (¢,1) es también no negativa.

Demostracion. Sea x(8) = ¢(#) > 0 la condicion inicial para el sistema de (4.1). A continua-
cion se verifica que f(W, Z) satisface la condicién (2.4)) del teorema para mayor claridad
esta se reescribe como:

Vi, t;: VW, Z € Ri se tiene que w; = 0= f;(W,Z) > 0.
En efecto,sit =1,y W, Z € Ri y wy; = 0, entonces
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K —w yz?
H(W, Z) = T()wl— =0.
K a?+wi||
w1=0
Por otra parte,sit =2,y W, Z € ]Ri y wo = 0, entonces
W, 2) = |~ Bun 1+ e e >0
 Z) = | —pPw z9€ = e >0,
2 T2t 27 4220

wo=0

pues la expresion racional asegura ser no negativa ya que su numerador es la multiplicacion
de un término v mayor que cero y un término cuadratico, mientras que su denominador es
siempre positivo ya que es el resultado de la suma de dos términos cuadraticos no negativos.
Asi mismo, el término exponencial también es un termino no negativo, con lo que se puede
asegurar que f cumple las condiciones del Teorema lo que garantiza que a partir de un
valor inicial z(6) = ¢(0) > 0 se obtendran soluciones no negativas. O

Proposicién 4.3. Las soluciones del sistema que se obtienen a partir de una condicion
inicial (¢,v) € C([~r,0],R?) no negativa, estin bien definidas para todo t > 0.

Demostracion. La demostracién se realizara por reduccién al absurdo. La tinica solucién del
sistema ([4.1)) con condicién inicial (¢,v) € C([—r,0],R%) estd definida sobre el intervalo
maximal [—r,d). Suponga que 0 < § < +00. Como d < co entonces sigue del Teorema [2.3| que

lim |((t), y(t))] = oc. (4.5)

t—0—
Por otro lado, de la ecuacién [.1] se conoce que:

dx (K—x) ya?
— = T — .
dt K + 2!

dx
Ahora, gracias a la Proposicién podemos acotar el valor para a eliminando los términos

negativos de la expresién anterior. Asi,

— < rx.
dt —

Integrando obtenemos la siguiente desigualdad:

X

In <rt,

o
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la cual es equivalente a
x(t) < ze™.

Verificando la condicién del limite del teorema 2.3

lim z(t) < lim zge™ = zge" < +o0. (4.6)
t—0— t—0—

Se puede verificar que mientras d este acotado, el limite anterior siempre sera finito.

De manera similar, de la ecuacién [£.1] se tiene que:

2
YTy —Yt
By + s ye N
By a2+xt2yt

dy _
dt

d
como antes, gracias a la proposicién es posible generar una cota d—‘:{ eliminando los ele-

mentos negativos de la ecuacién anterior y acotando e™ por 1, se obtiene que:

dy _ vaiw
dt = a2+ 27

Esta expresién se puede acotar aiin mas en base a la cota definida para x y a la saturacion
de la funcién de respuesta funcional, quedando la siguiente expresién:

dy
= < t—
7 S Yyt —7)

Integrando y utilizando el método de los pasos, se obtiene la siguiente desigualdad:

v < e o (1))

Verificando la condicién del limite del teorema 2.3

) , (t—1)"
1 <1 AT 4,
A y(6) < lm [[]] = < +oo, (4.7)

Por lo tanto, mientras § este acotado, los limites en [4.6] y siempre seran finitos.

Al verificar que ni para z(t) ni y(t) se cumple la proposicién del teorema caemos en
una contradiccién, en consecuencia § = +o00. ]

4.1.4. Equilibrios del modelo

Para determinar los puntos de equilibrio del sistema [4.2] igualaremos a cero las ecuaciones
diferenciales que lo conforman, asumiendo que en el equilibrio los valores de la poblacién con
y sin retardos son idénticos, por lo que x = x; e y = y;. Obteniendo asi el siguiente sistema
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de ecuaciones:

0 (K — x) a2
= r
K o+ 227
(4.8)
2
Yx -y
0= Pt aipve?

Se resolvié el sistema (4.8]) mediante métodos tradicionales y apoyandose en la libreria sympyf
de Python, la cual entregd los siguiente valores de equilibrio para x e y:

(z,9) € {(0,0), (K,0), (z",y")},

donde (z*,y*) corresponden a:

ax
enN

af (a\/—ﬁ‘*eéﬁ + 3,6’3”ye3W7 — 3ﬁ2’y2e% + Bylen — /BZKe% +28vKeN — 42K
z* =

N—

(ﬁe% - 'y) (aﬁQeQJ\7 — afyen + K\/—ﬁ‘le% + 3ﬁ376% — BBZ’}/Z@% + ,6’)/361?7)
(4.9)

ar <a52621\7 — afyer + K\/—ﬁ‘le% + 35376% - 352726%7 + 67361?7) e N

T BE (BeR — )

Se pudo determinar un cuarto punto de equilibrio estacionario el cual tiene signos opuestos
al anteriormente definido:

af <a\/—ﬁ4e§\7 + 3ﬁ3’7€%¥ - 362’726% + By3eN — 52K6%{ +2ByKeN — 72K> en

= —

(Be% — ) (a/a?e? — afyeR + Ky =R + 336 F —3929%F + gyt )
(4.10)

ar ((15263\7 — afyen + K\/—B‘le% + 35376% - 3527262% + BV?’eX') e N

T ok (667 )’

La solucién es negativa por lo que carece de sentido biolégico. Dentro de las raices de la
expresiones * e y* se tiene un polinomio que se denota por:

P(B,7) = —fle® +36%e™ — 3622 ¥ + fr’eR.

Para asegurar que esta solucién sea real se debe cumplir que P(3,~) > 0.
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4.1.5. Analisis de estabilidad de los equilibrios

Para analizar la estabilidad de las soluciones estacionarias se determiné la ecuacién carac-
teristica del sistema. Definimos las funciones f; : R> — R, con i = 1,2 por:

K—=x ya?
x_az—{—xzy

2 Yt

YTy
fa(w,y) = =By + 5——ye ™
a? +

Luego definimos las matrices A y B como:

a= (8 2): s (i )
ox oy ort Oyt

En equilibrio estacionario x = x; mientras que y = ¥, estas matrices corresponden respecti-
vamente a:

r 2yxya’ ya?

(K —21) —

e K( z) (a? + 22)? a? + 22
0 —p
y
0 0
B = _
2yxya’ WxQeWy <1 y)
(@® +22)2  a®+a? N

Se define la ecuacién caracteristica como:

det(\] — A — e M B) =0.

(z,y)=(z*y*)

a) Anailisis para el equilibrio (0,0)

Para este punto la ecuacién caracteristica queda definida como:

A—r 0
det( 0 )\+ﬁ>_0’
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lo cual es equivalente a la expresion:
A=7r)(A+5)=0

Por lo tanto, tenemos que los valores de A corresponden a Ay = r y Ay = —3. Como By r
son positivos, entonces uno de los valores de A, es positivo. Asi, el punto (z,y) = (0,0) es
inestable. Esto significa que las soluciones del sistema que partan cerca de este punto tenderan
a alejarse de él con el tiempo. Este es un resultado plausible y se ha encontrado en estudios
como los de Kar| (2005), [Liu (2010) o [Sun and Mai| (2018).

b) Anailisis para el equilibrio (K,0)

En este punto la ecuacion caracteristica estd determinada por:

VK2
det <)\ T _a2+K2)\TK2> =0
€
0 )\ + /8 - ’ya2+K2

o equivalentemente
N4 (4 BN+ 1B — e (A +1) LS D
CL2 + K2 :

Para estudiar condiciones de estabilidad absoluta se denota A = z y se aplican los siguientes
cambios de variables:

2
u=p+r ; v=rp y CZ_CLJ—GI—(I(?' (4.11)
Asi, la ecuacion caracteristica toma la siguiente forma:
(22 +uz+v)+e*e(z+7)=0.
Lo cual corresponde a una estructura:
p(z)+e *Tq(z) =0, (4.12)

con p(z) =22 +uz+vyqz) =clz+r).

Se analizé la estabilidad absoluta de utilizando las condiciones establecidas que se
listan en la Proposicién [2.4] Note que [£.11] implica que u > 0 y v > 0. Ademds, el grado de
P(z) es mayor que el grado de ¢(z), de donde inferimos que se cumple con la cuarta condicién
del la Proposicién . Recordemos que la norma de z = a+bi se define por |z| = va? + b2, luego

p(yi) = —y* +uyi +v, p(—yi) = —y2 —uyi+v, |p(yi)]® = (y>+v)*+ (u?y?),

q(yi) = c(yi +r), q(—yi) = c(—yi + 1), lq(iy)|? = 2y? + 2.

34



Por lo tanto, se cumple la segunda condiciéon de la Proposicién para asegurar estabilidad ab-
soluta de este equilibrio estacionario (K, 0). Finalmente, bastaria verificar la tercera condicién
de la Proposicién . Para esto planteamos la siguiente desigualdad equivalente:

lq(iy)|? 2

< |p(iy)

< |p(iy)P? — lq(iy)|?

< (P 0P (PR (B + )
< Y4y 2u+u? — )+ 0%+ Al

o O O

A continuacion se introduce un Lema que serd 1til para determinar la tercera condicién de la
Proposicién

Lema 4.1. [Brauer (1987)] La funcién g : R — R definida por
_ .4 2
9(y) =y + By +C,
toma wvalores positivos para 0 <y < 0o st y solo si:

C>0 y B2-—4C <0

[oN

C>0 , B>0 y B*—4C >0.

Ahora para asegurar la estabilidad absoluta de (4.12), aplicaremos el Lema considerando
B=2v+u?>—-cy C=v>4c*? >0, por lo que es suficiente que se cumpla :

(20 +u? — ?)? — 4(v* + %) <0, (4.13)

wHut—c>0 vy (2utu—c*)? 40w +cPr?)) > 0. (4.14)

Notemos que v%(1 + ¢?) > 0 implica que podemos definir I' = v/v2 + ¢2r2, las condiciones
anteriores pueden ser reescritas como:

(2u+u? - +20)(2v+u® -2 -2 <0 (4.15)

wtut - >0y Qutud - +20)2u4u - —2I)>0 (4.16)

Puesto que I' > 0 entonces (2v + u? — ¢ — 2T') < (2v + u? — ¢ + 2T"), y (4.15)) se satisface si
ysolosi2v+u? —c2+2' >0y 2v+u? — 2 —2I' < 0, o bien

M < 2w+u?—c? <2T.
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Por otro lado se satisface si y sélo si (2v+u? — ¢? — 2I') > 0, puesto que se verifican las
siguientes desigualdades:

(2u+u? —c? —20) < 2v+u? - < (2v+u? — 420

Resumiendo, la ecuacion (4.12) es absolutamente estable si se verifican las siguientes desigual-
dades © > 0, v > 0 y también —2I' < 2v + u? — ¢? < 2I" 6 2v + u? — ¢ > 2I". Aplicando el
cambio de variables [£.1] estas condiciones se redefinen como:

B+r>0 (4.17)
r3 >0 (4.18)
K? K2 2
27’5 + (/B + 7’)2 - <CL27+ K2> = 2T\/62 ’y_|_ KQ) (419)

Las condiciones [£.17] y [4.18]se cumplen siempre, ya que los pardmetros del modelo son siempre
positivos. En consecuencia, podemos afirmar que (K, 0) es absolutamente estable si se cumple
la condicién m Esto implica que las soluciones del modelo que partan cerca de (K,0) se
acercaran a este punto con el tiempo, es decir que dadas ciertas condiciones es posible que
se extingan los predadores. Como esto corresponde a una estabilidad absoluta, esta condicién
no depende del retardo 7 del modelo. En otros modelos de predador-presa con retardo ha
sido posible plantear condiciones para la estabilidad de soluciones donde hay extincién de los
predadores y persistencia de las presas (Sun and Mai, |2018)).

c) Anélisis para el equilibrio (z*,y*)

Para este punto de equilibrio la ecuacién caracteristica queda definida como:

A—aj —a
det 11 12 -0
¢ (—e—ATbgl A — aly — e b,

(A —at) (A= a3y — e Vb5y) — eV ajybyy = 0

o bien
(A —afy) (A —a3y) — e iy (A —afy) — e Majyby =0
A2 = (af) + ajo) A + ajazy — e M (b3y(A — afy) + afybhy) =0,
donde )0k 2 ( *)2
. r « 2vx"yta « v .
ap = g(K— 227) — @+ @R 2T g 2T -5,
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2,4

X 2ya*y*a’ . () eN< y*>

A7 @2+ ()22 2T @21 (27)2
Es posible aplicar el andlisis de estabilidad absoluta para el punto de equilibrio (z*,y*), pero

esto implicaria un gran desarrollo algebraico que superaria los tiempos definidos para esta
investigacién.

N

4.1.6. Simulaciones numéricas

Para la simulacién numérica del modelo se consideraron los valores para los parametros
que se presentan en el Cuadro [I.I] Con estas combinaciones de pardmetros se realizaron un
total de 216 simulaciones para el modelo , estos resultados fueron agrupados segin el
comportamiento que presentaron las poblaciones del predador y las presas. La categorias en
las que clasificaron los resultados fueron: Poblaciones en equilibrio positivo (72.2 %), extincién
de predadores (26.6 %) y poblaciones oscilantes (1,4 %). Como se explicd en la metodologia,
las graficas de las densidades de presas se realizaron en escala logaritmica, dado que su valores
presentan varios ordenes de diferencia con la de los predadores, lo que impedia su correcta
visualizacion.

Cuadro 4.2: Parametros simulacién modelo

Pardmetros  Descripcién Valores simulados
r Tasa de reproduccién de las presas 0.05, 0.1, 0.2
K Capacidad de carga 200, 500
a Tasa de saturaciéon media predador 0.1, 0.5, 0.8
v Tasa maxima de consumo per capita predador 0.1, 0.5, 0.8
153 Tasa de mortalidad predador 0.05, 0.1
N Tamano éptimo de reproduccién para la poblaciéon predador 1,2

Extincién de los predadores

Esta situacién se produce cuando los predadores tienen una alta tasa de mortalidad (5) y
una alta tasa media de saturacién (a) (Figura[4.1)). En este caso el predador no tiene un gran
impacto en las presas, ya que su parametro v de consumo per capita es bajo. Lo anterior
conlleva a que las presas sigan creciendo exponencialmente a su tasa de reproduccién (r)
hasta alcanzar la capacidad de carga (K), mientras que la densidad de los predadores se va
acercando a cero. Variar el parametro del tamano éptimo para la reproduccion del predador
(N) no cambiaria la tendencia registrada. Es importante destacar que, como sefiala Rumiz
(2010), el rol de carnivoro es poder controlar a las poblaciones de ciertas especies, y como
muestra la simulacién, el aumento de la mortalidad del Puma implica un rapido crecimiento
de las presas. En la literatura se menciona que la perdida de este control biolégico puede
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implicar ciclos de plagas que podrian provocar extinciones locales de distintas especies de
plantas y animales (Rios| 2009).

Orbita Aproximaciéon numérica
(r=01K=500a=05B=0.1y=01N=1
1.2- 6

o ~

|5 €

S 08- X 4.

3 ]
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£ c

> % Log(Presa)
S 3 — Predador (Puma)
® k]

° 2

& 04~ 8 o-

0-
0 100 200 %0 400 500 0 250 500 750 1000 1250
Presa N°ind/100km Tiempo (Meses)

Figura 4.1: Simulacién de extincion de predadores

Las poblaciones tienden al equilibrio positivo

Para este caso el valor de la tasa de saturacién (a) supera a la tasa méxima de consumo
per cépita predador (), por lo que la poblacién del predador se va regulando a medida que
consume a las presas, convergiendo hacia un valor fijo, mientras que si bien las presas presen-
tan oscilaciones en su densidad, su alta tasa de reproduccién (r) permite que se mantengan
cercanas a la capacidad de carga (K) (Figura[4.2). Por otro lado, la baja tasa de mortalidad

de los predadores () les permite poder mantener una densidad superior a la definida por el
parametro (V).

Poblacién oscilante

Para este caso, cada curva presenta unos maximos peridédicos desplazados temporalmente
para el predador y la presa (Retroalimentacién) (Figura . Una vez que el puma alcanza
su densidad maéaxima, la poblacién de presas desciende a tal punto que el alimento empieza
a escasear, lo que en consecuencia produce una disminuciéon de la poblacién de la especie
predadora, casi hasta el punto de extinciéon. Luego de esto el niimero de presas se regula y
comienza a elevarse, iniciando un nuevo ciclo. En todas las simulaciones que dieron este tipo
de resultado la tasa de reproduccién de presas (1) es baja y la capacidad de carga fue de 200
presas por cada 100 km?, mientras que la tasa de mortalidad de los predadores (/3), la tasa
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Figura 4.2: Simulacién de poblaciones en equilibrio positivo

méxima de consumo per capita predador () y el tamano 6ptimo para la reproduccién (N),
tuvieron los valores maximos evaluados. La tasa de saturaciéon media de los predadores fue
diferente en todos los casos, por lo que no seria influyente en este tipo de resultado. Como
hay una alta mortalidad de predadores y una baja natalidad y capacidad de carga de presas,
ninguno de los dos alcanza a estabilizarse en el tiempo, lo cual sumado a la alta eficiencia en la
caza por parte de los predadores, genera este comportamiento oscilatorio entre las densidades
de predador y presas. Cabe destacar que la densidad de los predadores se comporta con el
patron tipico asociado a un modelo tipo Nicholson (Gurney et al., [1980).
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Figura 4.3: Simulacién de densidades oscilatorias

4.2.

Al extender el modelo a dos parches se establecié que existe un movimiento de los predadores
desde un parche hacia el otro. Podemos aplicar este tipo de modelo para el Puma ya que existe
evidencia que indica que estos se desplazarian a otros territorios en respuesta a la falta de las
presas disponibles (Rumiz, |2010)). Asi mismo, el registro llevado a cabo por el Proyecto-GEF
(2021)), es una clara evidencia de que esta especie puede desplazarse entre distintos parches en
busca de su alimento. En el siguiente esquema (Figura se diagrama el proceso migratorio

del puma entre dos parches:

Estudio del modelo con dos parches

2 —u1
LY, ~t
——Lt1y,e M1
a? + .'r:fl h
m1y1
A
Parche 1 Parche 2
Y
mai2
—By —By2

Figura 4.4: Esquema de migracion de predadores
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Donde m; es la tasa de migracién de predadores desde el parche 1 hasta el parche 2, mg es
la tasa de migracion de predadores desde el parche 2 hasta el parche 1, z; es la densidad de
presas del parche 1, x2 es la densidad de presas del parche 2, y; es la densidad de predadores
del parche 1, y9 es la densidad de predadores del parche 2, N; es el tamaifio 6ptimo para la
reproduccion de los predadores del parche 1 y Ny es el tamafio 6ptimo de reproduccién de
los predadores del parche 2. El resto de los parametros son los mismos que se utilizaron en
el modelo para un parche, salvo que se incluye la capacidad de carga de las presas de cada
parche: pardmetros K1 y Ko.

4.2.1. Modelo con migracion constante

El modelo con migracién constante considera que una porciéon constante de los predadores del
parche 1 se mueven al parche 2 (Sistema [4.20)).

doy T<K1—m>x ot

dt K, L7zt x? s

di vz Yl

o =By + ﬁyltﬁ’ N+ moyr — miy
a , (4.20)

dzo (Kg — a:2> Y5

&2 (22Tt e

dt Ky 22442 b2

dy2 V3 2

di(yt =Py + ﬁym@ N2+ mayr — may2
2¢

4.2.2. Modelo con migracién denso dependiente

En este modelo la migracion se establece como un flujo denso dependiente de la cantidad de
presas que existe en un parche i, con ¢ = 1,2, en el instante ¢t. Si la poblacién en un parche

disminuye los predadores procederan a trasladarse hacia un parche j. El modelo general se
representa en el Sistema

dxy ZT<M>x oo

dt K, L) + 22

dy v, mar 1 1

_— = — PR — 1 —

dt Py + 21 TR T T a ! o)
dry r(fw)x _ e '

dt Ky )77 a®+a2”

dyo ’ya:%t _13% 1 1

== —_ — 2 —

dt Pyo+ o 3 Y€ TN T T s



4.2.3. Modelo con migracién radio dependiente

Para este modelo se establece una migracién de los predadores que depende de las densidades
de las presas en los parches de entrada y de salida. En este caso el predador irda del parche
7 que tiene un menor numero de presas, hacia el parche j que tiene un mayor ntmero de
estas. Para poder aplicar este mecanismo se incluyeron las siguientes funciones de migraciéon
al modelo:

Z2 T1

_ _ 1 4.22
10021 + 29 e 100z + 21 ( )

m1
Estas funciones no se indeterminan si es que la poblacién de alguno de los parches tiende
a cero ni tampoco permiten la migracién con tasas superiores a uno, ya que esto implicaria
movimientos de un tamano de predadores mayores a la densidad del instante ¢. Integrando
las funciones de [£:22] al modelo [£:20] proponemos el siguiente modelo:

i _ T(M)x oo

7 K, T a2y x? !

dyy i, ! ( e ) ( - )

o = Pt 22 V¢ 10005+ )" 7 10021 +2,) " (4.23)
ey _ (Ka—w) o |

7 e 2 24 42 Y2

dys i & ( - > ( . )

dyz _ 2y 2 — "\ 10010 + 71

dt Pyt 5 a3, 1002 + 22"~ \ 10025 + 21 )

Se realizé una simulacién de los valores de migracion de predadores entre dos parches, variando
en el tiempo su densidad de presas tal como se presenta en el cuadro De estos resultados
se infiere que las funciones planteadas en asignan una migracién del 100 % cuando en un
parche no hay presas. Asi mismo, el movimiento de predadores se mantiene en niveles cercanos
a cero cuando las poblaciones de presas de ambos parches son similares, comportamiento que
se puede apreciar en la figura .
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Figura 4.5: Simulacién de migracién de predadores

Cuadro 4.3: Simulacién de migracién

Tiempo Densidad presas Densidad presas Migracién predadores Migraciéon predadores
(meses) parche ¢ parche j deiaj dejazi
1 300 0 0,00 % 100,00 %
2 285 15 0,05 % 15,97 %
3 270 30 0,11% 8,26 %
4 255 45 0,18% 5,36 %
5 240 60 0,25 % 3,85 %
6 225 75 0,33% 2,91 %
7 210 90 0,43 % 2,28%
8 195 105 0,54 % 1,82%
9 180 120 0,66 % 1,48 %
10 165 135 0,81% 1,21 %
11 150 150 0,99 % 0,99 %
12 135 165 1,21% 0,81 %
13 120 180 1,48 % 0,66 %
14 105 195 1,82 % 0,54 %
15 90 210 2,28% 0,43 %
16 75 225 2,91% 0,33 %
17 60 240 3,85% 0,25 %
18 45 255 5,36 % 0,18 %
19 30 270 8,26 % 0,11%
20 15 285 15,97 % 0,05 %
21 0 300 100,00 % 0,00 %
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4.2.4. Simulaciones numéricas con dos parches

Para realizar las simulaciones numéricas con los dos parches, se utilizaron los mismos valores
de los pardmetros descritos en la tabla [£.I] Los resultados se agruparon segin similitud y se
compararon las simulaciones entregadas por los tres tipos de modelos de dos parches definidos
en este estudio (Ecuaciones (4.20), (4.21)) y (4.23))). Al segundo parche incluido en las simu-
laciones se le asigné una mayor capacidad de carga de presas, realizando simulaciones con
valores de K igual a 300 y 600 presas por 100 km?2. Asi mismo, los valores iniciales asociados
a este parche fueron de 200 presas en 100 km? y dos predadores en 100 km?. Para el modelo
con migracién constante se definié una tasa de migracién desde el parche 2 al parche 1 de
20% (mq) y una tasa de migracién desde el parche 1 al parche 2 de 10 % (ms).

a) Caso extincién de predadores

En estos casos se observa que la densidad de las presas de ambos parches se encuentra cercana
a las capacidades de carga (K7 y K3), mientras que la de los predadores paulatinamente
disminuye y tiende a cero. En la Figura[d.6]se aprecia que este comportamiento es generalizado
para los tres tipos de migracién utilizados. En cuanto a los pardmetros de la simulacion, la
tasa de mortalidad de los predadores (3 es alta, la tasa méaxima de consumo per capita de los
predadores (7y) es baja y los tamafios éptimos para la reproduccién de predadores (N7 y Na)
también son bajos, lo que explicaria la extincién de los pumas y que las presas se mantengan
en capacidad de carga a pesar de tener una baja tasa de reproduccion (r).
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Figura 4.6: Simulacién de modelos de dos parches, caso extincién de los predadores
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b) Caso equilibrio positivo

Este grupo se caracterizé por tener densidades de presa que tienden a la capacidad de carga,
mientras la densidad de los predadores va oscilando hasta alcanzar valores constantes que
dependen de los valores del resto de los pardmetros (Ver Figura . El comportamiento
fue similar entre los tres tipos de migracion, pero las oscilaciones presentes en la simulacién
con migracién constante fueron mucho més reducidas que en el resto de las simulaciones.
Asi mismo, en todas las simulaciones se aprecian retroalimentaciones entre las poblaciones de
predadores y presas de los distintos parches, pero en los casos de la migracién denso y radio
dependiente la poblacién de predadores del parche 2 tiende a cero, siendo superada por la
densidad de presas del parche 1. En cuanto a los parametros, la mayor densidad de presas en
el parche 1 se debe a su mayor capacidad de carga (K1), lo que favorece el desplazamiento
de los predadores hacia ésta area. Por otro lado, a pesar de tener un alto valor para la tasa
consumo per capita de los predadores () y una baja tasa de reproduccién de presas (r), estas
ultimas no disminuyen su densidad debido a que la tasa de saturacion media de los predadores
(a) también es alta y sus tamanos 6ptimos (N7 y Na) son bajos, limitando el consumo de los
pumas.
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Figura 4.7: Simulacién de modelos de dos parches, caso equilibrios positivos
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c) Caso poblacién oscilante

Esta clase de simulacién se caracterizé por presentar oscilaciones de las densidades de pre-
dadores y presas. Los valores de la densidad de presas se mueven entre las capacidades de
carga (K1 y K3) y cero (Ver Figura. La densidad de presas del parche 2 presenta mayores
fluctuaciones en comparaciéon con las presas del parche 1, mientras que la densidad de los
predadores de ambos parches oscilan entre cero y su valor méximo. Al comparar los distintos
tipos de migracién, es posible apreciar diferencias sustanciales entre estos, ya que la simu-
lacién con migracién constante presenta mayores cambios en el tiempo que el resto. En las
sub figuras [4.8b y [4.8}¢c, se observa que las densidades de los predadores se comportan con el
patrén tipico asociado a un modelo tipo Nicholson, caracterizado por una doble cresta (Gur-
ney et al., [1980). Entre el modelo con migracién denso dependiente y radio dependiente, se
observa que este tltimo tiene mas oscilaciones en las densidades de predadores y presas, pero
en ambos casos la densidad de predadores alcanza valores mayores que en el caso de migracion
constante. Este tipo de soluciones se caracterizan por una baja tasa de reproducciéon de las
presas (r), una baja mortalidad de los predadores () y una alta tasa de maxima de consumo
per capita de los predadores (). Todo esto influye disminuyendo la densidad de las presas,
en especial del parche 1, donde el tamatio 6ptimo para la reproduccién (N7) es mayor.
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Figura 4.8: Simulacion de modelos de dos parches, caso poblacion oscilante
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4.3. Simulacién de escenarios

Se plantearon tres escenarios hipotéticos que intentan ilustrar distintas perturbaciones que
puede sufrir el sistema predador-presa considerado en este estudio. El primer escenario corres-
ponde a la remocion sistematica del 50 % de las presas cuando estas alcanzan una densidad
cercana a la capacidad de carga del ecosistema. En el segundo escenario se realiza una re-
mocién del 50 % de los predadores cuando estos alcanzan los cuatro individuos por cada 100
Km?. Estos dos escenarios se plantearon sobre la base del caso de poblaciones oscilantes si-
muladas para el modelo con un parche. El tercer escenario se plantea para el sistema con dos
parches, en donde se limita el movimiento de predadores a un 30 % y se simulé bajo la base
del modelo con migracién radio dependiente con poblacién oscilante. Para estas simulaciones
se utilizaron los parametros del caso presentado en la Figura ya que es el que presenta un
equilibrio més delicado y es posible apreciar de mejor manera el efecto de las perturbaciones
en el sistema.

4.3.1. Reduccién de las presas

La remocién de presas que se aprecia en la figura 4.9 cambia la dindmica de los predadores, ya
que se presenta la perdida del comportamiento caracteristico de una poblacién representada
con un modelo tipo Nicholson. Atn asi, la tendencia general de las densidades de predadores
y presas sigue el mismo patron del sistema que no ha sufrido la alteraciéon, donde la poblacién
de pumas alcanza el mismo valor maximo pero luego tienen un rapido descenso. Es posible
identificar que se mantienen las retroalimentaciones entre las densidades de predador y presas,
pero la remocion sistematica de una fraccion de las presas disminuye la duracién de los periodos
de mayor abundancia del puma.

4.3.2. Reduccién de los predadores

La disminucién de la densidad de pumas genera una alteracion en el comportamiento del
sistema (Ver Figura c). Se pierden totalmente las retroalimentaciones entre predador y
presas. Estas ultimas disminuyen su poblacién hasta alcanzar un ntmero constante en el
tiempo, mientras que para el Puma se tiene una oscilacién constante entre el niimero maximo
determinado para la densidad (cuatro individuos por 100 Km?) y el 50 % de este valor (dos
individuos por 100 Km?). Si se compara con la alteracién de la reduccién del nimero de
presas, la disminucién del predador puede generar un efecto notoriamente mas significativo
en las tendencias del sistema. Este cambio del comportamiento es comparable al resultado
obtenido por el estudio de |Barman and Ghosh| (2022) donde se definié que al implementar la
cosecha de la presa y el predador por separado, se puede generar un cambio de estabilidad
del sistema.
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Figura 4.9: Efecto de la remocién de presas y predadores
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(a) Escenario sin limitacién de la migracién
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Figura 4.10: Efecto de la limitacién en la migracién

4.3.3. Limitacion de la migracién

La limitacién de la movilidad del Puma (Ver Figura , disminuye notoriamente los méaxi-
mos poblacionales de la densidad del predador que se producen en la simulacién sin esta
alteracién. Este cambio se ve acentuado en la poblacién del parche 2, la cual pasa a ser in-
ferior a la del parche 1. Esto dado que, el parametro Ny del primer parche es mayor al No,
por lo que este tultimo tiene una menor capacidad de recambio de individuos adultos. En el
sistema sin alteracién, el parche 1 tiene un mayor tamano 6ptimo para la reproduccién de
predadores, pero el parche 2 posee una mayor capacidad de carga de presas (K32), por lo que
la migracion favorece positivamente al desarrollo general de la poblacién de pumas. Con este
resultado se refuerza la necesidad de mantener o bien aumentar la infraestructura ecolégica

necesaria que le permita a los pumas poder desplazarse libremente entre diferentes sectores,
de manera de mejorar su estado de conservacion.
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Capitulo 5

Conclusiones

El presente trabajo exploré diversas potencialidades de un modelo que describe el compor-
tamiento de un sistema bioldgico, siendo un aporte al conocimiento del area de las bioma-
tematicas o més especificamente en la ecologia matemaética.

Fue posible integrar un modelo predador-presa de ecuaciones diferenciales con retardo, una
respuesta funcional tipo III, crecimiento logistico para las presas y una ecuacién tipo Nichol-
son para el Puma. Como se ha mencionado con anterioridad, no existen estudios previos que
integren este tipo de modelos matematicos y que los apliquen a la especie de interés de esta
investigacion. En este modelo se aseguré que un aumento de la densidad del predador dismi-
nuye la tasa de incremento per capita de las presas, que hay un efecto positivo de la densidad
de las presas sobre la tasa de incremento per cépita del predador. Ademads, que la tasa de
reproduccion del Puma tiene un méaximo que va decreciendo a medida que la poblacién se
densifica y también ante la falta de presas. Lo anterior se verificé ya que son atributos que
establecieron Berryman et al.| (1995) para la credibilidad de este tipo de modelos. Fue posible
demostrar que para el modelo planteado existe una tnica solucién méximal para cada con-
dicién inicial, la cual es no negativa para condiciones iniciales no negativas y que estd bien
definida para todo ¢t mayor que cero.

Se determinaron los equilibrios del sistema y fue posible estudiar parcialmente su es-
tabilidad, ya que la dificultad algebraica de estos resultados impidieron poder aplicar la teoria
matematica desarrollada para este tipo de sistemas. Se pudo definir que el escenario de ex-
tincién de predador y presas es un punto de equilibrio inestable, mientras que para el punto
en donde los presas alcanzan su capacidad de carga y el Puma se extingue, se plantearon
condiciones que aseguran su estabilidad absoluta. Para el tercer punto de equilibrio, no se
pudo realizar el andlisis de estabilidad, pero se planted un desarrollo general de su ecuaciéon
caracteristica. Los resultados obtenidos para los equilibrios analizados, son congruentes con
otros estudio similares (Kar, 2005; |Liu), [2010; Sun and Mai, [2018)). Estos andlisis pueden ser
completados a futuro realizando un estudio de las bifurcaciones de Hopf, que es la metodo-
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logia adecuada para examinar el comportamiento de las soluciones periddicas que tienen los
sistemas dindmicos (Smith) [2011)).

Las simulaciones realizadas con distintos valores para los parametros del modelo, indicaron
que existen tres posibles escenarios para las soluciones del modelo. En el primero de estos se
produce la extincién del predador, en el segundo las poblaciones de predador y presa se vuel-
ven constantes y en el ultimo se produce una dindmica de retroalimentaciones constantes entre
las densidades del predador y la presa. Uno de los resultados destacables es que el aumento
de la tasa de mortalidad de los pumas genera un rapido crecimiento de las presas, lo que se
podria asociar al desencadenamiento de plagas que tienen un alto riesgo en la biodiversidad
de los ecosistemas.

Al extender el modelo inicial a dos parches, se agregaron tres modulaciones para la migra-
cién del Puma entre los parches: constante, denso dependiente y radio dependiente. Las dos
ultimas fueron las que entregaron mas complejidad a las soluciones simuladas, visualizandose
patrones de migracién entre los parches como respuesta a los cambios en las densidades de las
poblaciones de presas. El modelo de migraciéon radio dependiente es una contribuciéon parti-
cular de este trabajo y a futuro se podria estudiar su comportamiento al integrarse con otro
tipo de modelos.

Al modificar la densidad de la poblacién de presas y de los predadores, se pudieron apreciar
modificaciones en el comportamiento del sistema. La remocién sistematica de una fraccion
de las presas, disminuye la duraciéon de los periodos donde la densidad del Puma es maxima.
Asi mismo, al quitar una fraccién importante de la poblacién de pumas, la poblacién de pre-
sas crece a tasa exponencial alcanzando la capacidad de carga del ecosistema. Lo anterior es
evidencia de que modificar las densidades de estos predadores incrementa la probabilidad de
tener plagas de algunas especies que este controla naturalmente. Estos resultado son similares
a los obtenidos por el estudio de Laguna et al.| (2015), donde se plantea un modelo matematico
que, mediante la dindmica de parches, describe la relaciéon entre el puma y dos presas. En esta
investigacién, la extincién del puma genera un aumento de la tasa de ocupaciéon de parches
de las presas (guanacos y ovejas).

La limitacién de la migracion entre los parches generé un efecto negativo en los maximos
alcanzados por las poblaciones de predadores presentes en ambos parches, esta es una evi-
dencia mas que enfatiza la importancia de mantener los corredores bioldgicos que conectan
los diferentes ecosistemas donde habita el Puma. Este resultado ya tiene precedentes en la
literatura, como el estudio de Liu (2010)) donde se determiné que la tasa de migracién tiene
un gran efecto en el comportamiento dindmico de un modelo predador-presa sin retardo.

En un futuro estudio seria interesante determinar condiciones para la existencia de un equi-
librio positivo y para la estabilidad absoluta de este mismo, que fue uno de los temas en
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que no se pudo profundizar en esta investigacion, asi como también evaluar los cambios que
producen las perturbaciones evaluadas en el subcapitulo [£.3] pero aplicadas a sistemas que
estén en equilibrio. Por ultimo, dados los antecedentes sobre el tiempo de madurez sexual
diferenciada entre pumas machos y hembras (Toledo and Surot, 2003)), seria necesario evaluar
la posibilidad de plantear un modelo que integre esta condicién.
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